期刊文献+

基于特征选择支持向量机的柱塞泵智能诊断 被引量:3

Intelligent Fault Diagnosis for Plunger Pump Based on Features Selection and Support Vector Machines
下载PDF
导出
摘要 柱塞泵是工程机械的关键部件,其性能好坏将直接影响整个设备的正常工作。针对柱塞泵提出基于特征选择支持向量机的智能诊断方法。对采集的振动信号基于小波包分解提取能量特征,然后利用Fisher准则函数选择对智能诊断最有利的特征,利用支持向量机进行训练,并将每个二类支持向量机按二叉树的组织形式构成系统的诊断模型。以汽车起重机柱塞泵为研究对象,其6种故障形式,包括正常、轴承内圈故障、滚动体故障、柱塞故障、配流盘故障、斜盘故障,用于检验所提算法的诊断能力,并与传统的BP神经网络和最近的蚁群神经网络方法进行对比。诊断结果表明:所提出的算法优于另外两种方法,具有较好的诊断效果。 In truck crane, the plunger pump is the key equipment, and the quality of the pump affects directly the performance of whole mechanical system. A novel intelligent diagnosis method based on features selection and support vector machine (SVM) was proposed for plunger pump in truck crane. Based on the wavelet packet decompose, the wavelet packet energy was extracted from the original vibration signal to represent the condition of equipment. Then, the Fisher criterion was utilized to select the most suitable fea- tures for diagnosis. Finally, each two-class SVM with binary tree architecture was trained to recognize the condition of mechanism. The proposed method was employed in the diagnosis of plunger pump in truck crane. The six states, including normal state, bearing inner race fault, bearing roller fault, plunger fault, thrust plate wear fault, and swash plate wear fault, were used to test the classification performance of the proposed Fisher-SVMs model, which was compared with the classical and the latest models, such as BP ANN, ANT ANN, respectively. The experimental results show that the Fisher-SVMs is superior to the other two models, and gets a promising resuit.
出处 《机床与液压》 北大核心 2013年第19期164-168,147,共6页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(51205371) 上海科技创新行动计划资助项目(11dz1121500 11JC1405800) 机械系统与振动国家重点实验室资助项目(MSV-2012-06)
关键词 柱塞泵 故障诊断 FISHER准则 支持向量机 Plunger pump Fault diagnosis Fisher criterion Support vector machines
  • 相关文献

参考文献9

  • 1唐宏宾,吴运新,滑广军,马昌训.基于EMD包络谱分析的液压泵故障诊断方法[J].振动与冲击,2012,31(9):44-48. 被引量:61
  • 2WANG Q, CHEN H, CHUA P, et al. Fault Detection of Wa- ter Hydraulic Motor by Demodulated Vibration Signal Analy- sis with the Hilbert Transform and Genetic Algorithm [ J ]. Journal of Testing and Evaluation,2011,39 ( 2 ) : 1 - 8. 被引量:1
  • 3WU J, CHIANG P, CHANG Y, et al. An Expert System for Fauh Diagnosis in Internal Combustion Engines Using Prob- ability Neural Network [J]. Expert Systems with Applications ,2008,34(4) :2704 - 2713. 被引量:1
  • 4GUO L, CHEN J, LI X. Rolling Bearing Fault Classification Based on Envelope Spectrum and Support Vector Machine [J]. JVC/Journal of Vibration and Control, 2009,15 ( 9 ) : 1349 - 1363. 被引量:1
  • 5DU W,LI Y, YUAN J, et al. Denoising with Advanced Step-wise False Discovery Rate Control and Its Application to Fault Diagnosis [ J ]. Measurement, 2012, 45 ( 6 ) : 1515 - 1526. 被引量:1
  • 6LI N, LIU C, HE C,et al. Gear Fault Detection Based on A- daptive Wavelet Packet Feature Extraction and Relevance Vector Machine [J]. Proceedings of the Institution of Me- chanical Engineers : Part C : Journal of Mechanical Engineer- ing Science ,2011,225 (7) :2727 - 2738. 被引量:1
  • 7YANG B, HAN T, AN J. Art-Kohonen Neural Network for Fault Diagnosis of Rotating Machinery [J]. Mechanical Systems and Signal Processing,2004,18 (3) :645 - 657. 被引量:1
  • 8VAPNIK V N. Statistical Learning Theory [ M ]. New York: Wiley, 1998. 被引量:1
  • 9孙旺,李彦明,杜文辽,苑进,刘成良.基于蚁群神经网络的泵车主泵轴承性能评估[J].上海交通大学学报,2012,46(4):596-600. 被引量:6

二级参考文献24

  • 1王少萍,苑中魁,杨光琴.液压泵信息融合故障诊断[J].中国机械工程,2005,16(4):327-331. 被引量:33
  • 2罗忠辉,薛晓宁,王筱珍,吴百海,何真.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129. 被引量:67
  • 3周汝胜,焦宗夏,王少萍.液压系统故障诊断技术的研究现状与发展趋势[J].机械工程学报,2006,42(9):6-14. 被引量:148
  • 4张风山,静永臣.工程机械液压、液力系统故障诊断与维修[M].北京:化学工业出版社,2009:287-300. 被引量:2
  • 5Li Y W, Wei G Z, Ying L. Rolling bearing fault di- agnosis based on wavelet packet-neural network char- acteristic entropy [J]. Advanced Materials Research, 2010, 108-111(1): 1075-1079. 被引量:1
  • 6Wang D, Li M, Wang L, et al. Fault diagnosis of ABS of vehicles based on BP neural net [C]// Pro- eeedings of the 29th Chinese Control Conference. Bei- jing, China: IEEE, 2010: 4041-4045. 被引量:1
  • 7Huang L, Nan J G, Sui Y H. Fault diagnosis method for HUD based on fuzzy BP neural network [C]// Proceedings - 2010 International Conference on Artifi- cial Intelligence and Education. Hangzhou, China: IEEE, 2010: 550-553. 被引量:1
  • 8Jiang H, Jia S, Lai G. Fault diagnosis of marine main engine based on BP neural network [C]// Pro- ceedings of 2009 8th International Conference on Reliability, Maintainability and Safety. Chengdu, China: IEEE, 2009: 822-825. 被引量:1
  • 9Wei J, Yu H, Li J. Transformer fault diagnosis based on improved quantum genetic algorithm and BP network [J]. Applied Mechanics and Materials, 2010, 29-32: 1543-1549. 被引量:1
  • 10Wu X, Hu C, Wang Y. Model checking algorithm based on ant colony swarm intelligence [J]. Communication in Computer and Information Science, 2009, 51 :281-285. 被引量:1

共引文献65

同被引文献21

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部