期刊文献+

A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning 被引量:3

原文传递
导出
摘要 This paper presents a novel tracking algorithm which integrates two complementary trackers. Firstly, an improved Bayesian tracker(B-tracker) with adaptive learning rate is presented. The classification score of B-tracker reflects tracking reliability, and a low score usually results from large appearance change. Therefore, if the score is low, we decrease the learning rate to update the classifier fast so that B-tracker can adapt to the variation and vice versa. In this way, B-tracker is more suitable than its traditional version to solve appearance change problem. Secondly, we present an improved incremental subspace learning method tracker(Stracker). We propose to calculate projected coordinates using maximum posterior probability, which results in a more accurate reconstruction error than traditional subspace learning tracker. Instead of updating at every time, we present a stopstrategy to deal with occlusion problem. Finally, we present an integrated framework(BAST), in which the pair of trackers run in parallel and return two candidate target states separately. For each candidate state, we define a tracking reliability metrics to measure whether the candidate state is reliable or not, and the reliable candidate state will be chosen as the target state at the end of each frame. Experimental results on challenging sequences show that the proposed approach is very robust and effective in comparison to the state-of-the-art trackers.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2019年第5期1116-1135,共20页 中国计算机科学前沿(英文版)
基金 This paper was supported by the National Natural Science Foundation of China (Grant No. 61472289) the National Key Research and Development Project of China (2016YFC0106305).
  • 相关文献

参考文献11

二级参考文献347

  • 1熊志辉,李思昆,陈吉华.具有初始信息素的蚂蚁寻优软硬件划分算法[J].计算机研究与发展,2005,42(12):2176-2183. 被引量:9
  • 2王震宇,张可黛,吴毅,卢汉清.基于SVM和AdaBoost的红外目标跟踪[J].中国图象图形学报,2007,12(11):2052-2057. 被引量:11
  • 3Adam A,Rivlin E,Shimshoni I.Robust fragments-basedtracking using theintegral histogram[C]// Proc of the 19th IEEE Computer Vision and Pattern Recognition.LosAlamitos,CA:IEEE Computer Society,2006;798-805. 被引量:1
  • 4Comaniciu D,Ramesh V,Meer P.Kernel-based objecttracking[J],IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5):564-575. 被引量:1
  • 5Liang D,Huang Q,Jiang S,et al.Mean-shift blob trackingwith adaptive feature selection and scale adaptation[C]//Proc of the 11th IEEE Int Conf on Computer Vision.LosAlamitos,CA:IEEE Computer Society,2007:369-372. 被引量:1
  • 6Ning J,Zhang L,Zhang D,et al.Scale and orientationadaptive mean shift tracking[J].Computer Vision,IET,2012,6(1);52-61. 被引量:1
  • 7Yu T,Wu Y.Differential tracking based on spatial-appearance model (SAM)[C]// Proc of the 19th IEEE Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2006:720-727. 被引量:1
  • 8Han B,Davis L.On-line density-based appearance modeling for object tracking[C]// Proc of the 10th IEEE Int Conf onComputer Vision.Los Alamitos,CA:IEEE Computer Society,2005:1492-1499. 被引量:1
  • 9Wang H,Suter D,Schindler K,et al.Adaptive objecttracking based on an effective appearance filter[J].IEEETrans on Pattern Analysis and Machine Intelligence, 2007,29(9):1661-1667. 被引量:1
  • 10Ross D,Lim J,et al.Incremental learning for robust visualtracking[J].International Journal Computer Vision,2008,77(1):125-141. 被引量:1

共引文献103

同被引文献14

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部