期刊文献+

基于可信预测值的协同过滤推荐算法

The Collaborayive Filtering Recommendation Algorithm Based on Reliable Prediction Value
下载PDF
导出
摘要 针对在传统协同过滤算法中存在的推荐精度较低、预测质量不佳的问题,该文提出一种基于可信预测值的协同过滤算法(RPCF).该算法在使用基于记忆的协同过滤方法计算预测值的基础上,引入可信度概念和技术方法,运用对推荐项目评级的邻居数评估可信度,融合可信度与传统预测值得到可信预测值,再根据可信预测值进行推荐,从而达到提升算法质量的目标.在MovieLens数据集中与其他提高精度方法进行实验对比,实验结果表明:RPCF方法能够提高预测精度和算法鲁棒性,具有更好的推荐质量. To address the problem of low recommendation accuracy and poor prediction quality in traditional collaborative filtering algorithms,the collaborative filtering algorithm based on reliable prediction value(RPCF)is proposed.On the basis of the predicted value calculated by memory-based collaborative filtering method,the algorithm introduces the concept and technical method of credibility,and employs the number of rated neighbors to evaluate credibility,the credibility and traditional predicted value is fused to obtain the credible predicted value,then the recommendation is generated according to credible prediction value,so as to achieve the goal of improving the quality of the algorithm.Compared with other methods to improve accuracy on the MovieLens dataset,experimental results show that RPCF can improve prediction accuracy and algorithm robustness,and has better recommendation quality.
作者 邓泓 吴祎 于程远 袁徽鹏 DENG Hong;WU Yi;YU Chengyuan;YUAN Huipeng(Software College,Jiangxi Agricultural University,Nanchang Jiangxi 330045,China;School of Computer and Information Engineering,Jiangxi Agricultural University,Nanchang Jiangxi 330049,China)
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2022年第6期642-648,共7页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(62262028) 江西省教育厅科技课题(GJJ170268,GJJ200438,GJJ210438)资助项目.
关键词 协同过滤 推荐精度 可信度 可信预测值 鲁棒性 collaborative filtering recommendation accuracy credibility credible predicted value robustness
  • 相关文献

参考文献6

二级参考文献66

  • 1何光辉,鲍丽山,王蔚韬,周戈.协同过滤推荐项目优化处理的初步研究[J].计算机科学,2004,31(10):76-78. 被引量:1
  • 2王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 3李涛,王建东,叶飞跃,冯新宇,张有东.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182. 被引量:70
  • 4Ricci F, Rokach L, Shapira B, et al. Recommender Systems Handboo[M]. Berlin: Springer, 2011:145-186. 被引量:1
  • 5Koren Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model[C]//Proe of the 14th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2008 : 426-434 Mobasher B, Burke R, Sandvig J. Model-based collaborative filtering as a defense against profile injection. 被引量:1
  • 6attacks [C] // Proc of the 21st National Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2006:1388-1393. 被引量:1
  • 7Sandvig J, Mobasher B, Burke R. Robustness of collaborative recommendation based on association rule mining [C] //Proc of the 2007 ACM Conf on Recommender Systems. New York: ACM, 2007:105-112. 被引量:1
  • 8Mehta B, Hofmann T, Nejdl W. Robust collaborative filtering [C]//Proc of the 2007 ACM Conf on Recommender Systems. New York: ACM, 2007:49-56. 被引量:1
  • 9Pitsilis G, Marshall L. A model of trust derivation from evidence for use in recommendation systems, CS-TR-874 [R]. Newcastle, UK: University of Newcastle Upon Tyne, 2004. 被引量:1
  • 10Pitsilis G, Marshall L. Modeling trust for recommender systems using similarity metrics [C] //Proc of IFIPTM 2008. Berlin: Springer, 20081 103-118. 被引量:1

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部