期刊文献+

目标跟踪中表观建模研究进展

下载PDF
导出
摘要 目标跟踪是计算机视觉中的热点研究问题,具有重要的理论价值和广泛的应用前景。虽然研究者对目标跟踪进行了大量研究,但是目标跟踪在复杂场景下的效果依然难以令人满意。为了设计鲁棒的目标跟踪算法,需要解决的首要问题是如何对目标表观进行建模。近年来,视觉理论和机器学习的蓬勃发展促进了目标表观建模的研究。为了使读者了解最新的表观建模研究进展,首先分析了最近几年典型的目标表观建模方法,并对目标表观建模的一般框架进行了总结,然后分别从目标的视觉描述和模型学习两方面进行了详细的论述,最后讨论了目标表观建模还存在的问题以及未来发展的方向。
出处 《中国人民公安大学学报(自然科学版)》 2016年第1期73-78,共6页 Journal of People’s Public Security University of China(Science and Technology)
基金 2014北京市支持中央高校共建项目公安视听专业建设项目 国家自然科学基金项目(61503388 61402484 61503387) 中央高校基本科研业务费资助项目
  • 相关文献

参考文献32

  • 1Xi Li, Weiming Hu, Chunhua Shen, et al. A survey of appearance models in visual object tracking [ J ]. ACM Transactions on Intelligent Systems and Technology,2013,4(4) ;1 -48. 被引量:1
  • 2Yi Wu, Jongwoo Lim, Yang Ming-Hsuan. Online Object Tracking: A Benchmark [ C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2013:2411 - 2418. 被引量:1
  • 3张焕龙,胡士强,杨国胜.基于外观模型学习的视频目标跟踪方法综述[J].计算机研究与发展,2015,52(1):177-190. 被引量:64
  • 4Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking [ J ]. International Journal of Computer Vision, 2005, 77( 1 ) :125 - 141. 被引量:1
  • 5Mei X, Ling H. Robust Visual Tracking using L1 Mini- mization[ C ]//Computer Vision, 2009 IEEE 12th Inter- national Conference on. IEEE, 2009 : 1436 - 1443. 被引量:1
  • 6Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting[ C]//British Machine Vision Confer- ence. Edinburgh : BMVA Press, 2006:47 - 56. 被引量:1
  • 7M H Y Boris Babenko, S. Belongie. Robust object track- ing with online multiple instance learning [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2011, 33(8) :1619 - 1632. 被引量:1
  • 8Rui Yao, Qinfeng Shi, Chunhua Shen, et al. Part-Based Visual Tracking with Online Latent Structural Learning [ C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. 2013:2363 -2370. 被引量:1
  • 9Tianzhu Zhang, Kui Jia, Changsheng Xu, et al. Partial Occlusion Handling for Visual Tracking via Robust Part Matching [ C ] //IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE Press, 2014: 1258 - 1265. 被引量:1
  • 10Guang Shu, Dehghan A, Oreifej O, et al. Part-based multiple-person tracking with partial occlusion handling [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE Press, 2012: 1815- 1821. 被引量:1

二级参考文献81

  • 1王震宇,张可黛,吴毅,卢汉清.基于SVM和AdaBoost的红外目标跟踪[J].中国图象图形学报,2007,12(11):2052-2057. 被引量:11
  • 2Adam A,Rivlin E,Shimshoni I.Robust fragments-basedtracking using theintegral histogram[C]// Proc of the 19th IEEE Computer Vision and Pattern Recognition.LosAlamitos,CA:IEEE Computer Society,2006;798-805. 被引量:1
  • 3Comaniciu D,Ramesh V,Meer P.Kernel-based objecttracking[J],IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5):564-575. 被引量:1
  • 4Liang D,Huang Q,Jiang S,et al.Mean-shift blob trackingwith adaptive feature selection and scale adaptation[C]//Proc of the 11th IEEE Int Conf on Computer Vision.LosAlamitos,CA:IEEE Computer Society,2007:369-372. 被引量:1
  • 5Ning J,Zhang L,Zhang D,et al.Scale and orientationadaptive mean shift tracking[J].Computer Vision,IET,2012,6(1);52-61. 被引量:1
  • 6Yu T,Wu Y.Differential tracking based on spatial-appearance model (SAM)[C]// Proc of the 19th IEEE Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2006:720-727. 被引量:1
  • 7Han B,Davis L.On-line density-based appearance modeling for object tracking[C]// Proc of the 10th IEEE Int Conf onComputer Vision.Los Alamitos,CA:IEEE Computer Society,2005:1492-1499. 被引量:1
  • 8Wang H,Suter D,Schindler K,et al.Adaptive objecttracking based on an effective appearance filter[J].IEEETrans on Pattern Analysis and Machine Intelligence, 2007,29(9):1661-1667. 被引量:1
  • 9Ross D,Lim J,et al.Incremental learning for robust visualtracking[J].International Journal Computer Vision,2008,77(1):125-141. 被引量:1
  • 10Wen L,Cai Z,Lei Z,et al.Online spatio-temporalstructural context learning for visual tracking[G]//LNCS7575:Proc of European Conf on Computer Vision.Berlin:Springer,2012:716-729. 被引量:1

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部