期刊文献+

光纤入侵信号的特征提取与识别算法 被引量:17

Feature Extraction and Recognition Algorithm for Fiber Intrusion Signals
原文传递
导出
摘要 为了对分布式光纤上的入侵信号类型进行准确识别,提出了一种基于集合经验模态分解(EEMD)结合随机向量函数链接(RVFL)神经网络的光纤入侵信号的特征提取与识别算法。算法步骤为:对采集到的光纤入侵信号作预处理操作,包括最小-最大规范化处理和利用db3小波去除信号的低频噪声;采用EEMD方法对入侵信号进行分解,得到5组本征模态函数(IMF);计算各IMF分量的能量占比,并依据方差分析法筛选出3组特征向量;将特征向量送入RVFL神经网络进行训练并对入侵信号进行识别。实验结果显示:该方法能正确识别不同入侵信号的类型,具有较高的准确率。 A feature extraction and recognition algorithm for fiber intrusion signals is proposed based on ensemble empirical-mode decomposition(EEMD)coupled with a random vector-function linked(RVFL)neural network to accurately identify the type of intrusion signal on a distributed optical fiber.The proposed algorithm starts with the preprocessing for the collected fiber intrusion signals,including minimum-maximum normalization processing and the removal of low frequency noise using the db3 wavelet.Then,the intrusion signals are decomposed by the EEMD to obtain five groups of intrinsic mode functions(IMF).Subsequently,the energy ratio of each component of the IMF is calculated,and three feature vectors are filtered using the analysis of variance.Finally,the feature vectors are sent into the RVFL neural network to be trained for the completion of the signal recognition.The experimental results validate that the proposed algorithm can accurately distinguish between different intrusion signals with high recognition rate.
作者 曲洪权 宫殿君 张常年 王彦平 Qu Hongquan;Gong Dianjun;Zhang Changnian;Wang Yanping(School of Electronic and Inform ation Engineeringt North China University of Technology,Beijing 100144,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第13期32-39,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61571014) 北京自然科学基金(4172017)
关键词 光纤光学 光纤预警系统 特征提取与识别 集合经验模态分解 随机向量函数链接神经网络 fiber optics fiber pre-warning system feature extraction and recognition ensemble empirical mode decomposition random vector function linked neural network
  • 相关文献

参考文献13

二级参考文献126

共引文献92

同被引文献185

引证文献17

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部