期刊文献+

基于经验模态分解的偏振模色散测量实验研究 被引量:6

Experimental Research on Polarization Mode Dispersion Measurement Based on Empirical Mode Decomposition
原文传递
导出
摘要 为了消除固定分析仪法测量偏振模色散系统中的噪声,提高测量精度,提出了一种基于经验模态分解自适应滤波法的偏振模色散测量方案。该滤波法将信号按照其频谱特征进行多层分解,获得有限个频率从大到小的本征模态函数,利用连续均方误差准则进行噪声滤除及信号重构,有效地消除了噪声对测量结果的影响。实验对比了经验模态分解自适应滤波和维纳滤波2种滤波方案的测量结果,并与商用偏振模色散测量仪的测量结果进行了比较。结果表明,对不同种类、长度的光纤,本方案的测量结果与参考值的误差最大为0.74%,明显提高了测量结果的精度。 In order to improve measurement accuracy in the polarization mode dispersion (PMD) measurement system by the fixed analyzer method, the noise in the link should be eliminated. Here, a polarization mode dispersion measurement scheme based on empirical mode decomposition (EMD) adaptive filtering to mitigate noise is proposed. According to signal spectral characteristics, it is decomposed into a finite number of intrinsic mode functions (IMFs), which are arranged by frequency from large to small. The consecutive mean square error (CMSE) criterion is used for noise filtering and signal reconstruction, which effectively eliminates the noise impacting on the measurement results. The experiments compare results based on the EMD adaptive filtering method, Wiener filtering method and commercial instruments. The results show that this scheme is suitable for different types and lengths of fibers, and the maximum relative error between the measured result and the reference value is 0.74%. The measurement accuracy is improved obviously.
出处 《中国激光》 EI CAS CSCD 北大核心 2018年第1期206-212,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(61571057 61527820)
关键词 光通信 偏振模色散 经验模态分解 固定分析仪法 optical communications polarization mode dispersion empirical mode decomposition fixed analyzer method
  • 相关文献

参考文献5

二级参考文献52

  • 1Wu Qingju, Tian Xiaobo, Zhang Nailing, Li Weiping and Zeng RongshengInstitute of Geophysics, China Seismological Bureau, Beijing 100081, China.Receiver Function Estimated by Wiener Filtering[J].Earthquake Research in China,2003,17(4):386-391. 被引量:4
  • 2彭志科,卢文秀,褚福磊.新的基于小波变换的振动信号消噪方法[J].机械工程学报,2006,42(4):18-22. 被引量:35
  • 3T. Wang, S. Lan, J. Jiang, and T. Liu, Chin. Opt. Lett. 6, 812 (2008). 被引量:1
  • 4W. Xu, G. Duan, G. Fang, L. Xi, and X. Zhang, Acta Opt. Sin. (in Chinese) 28, 226 (2008). 被引量:1
  • 5B. L. Heffner, IEEE Photon. Technol Lett. 4, 1066 (1992). 被引量:1
  • 6C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, J. Light wave Technol. 6, 1185 (1988). 被引量:1
  • 7C. D. Poole and D. L. Favin, J. Lightwave Technol. 12,917 (1994). 被引量:1
  • 8N. Gisin, R. Passy, and J. P. Von der Weid, IEEE Photon. Technol. Lett. 6, 730 (1994). 被引量:1
  • 9G. D. Van Wiggeren, A. R. Motamedi, and D. M. Baney, IEEE Photon. Technol. Lett. 15, 263 (2003). 被引量:1
  • 10J. Jiang, S. Sundhararajan, D. Richards, S. Oliva, and R. Hui, Opt. Express 16, 14057 (2008). 被引量:1

共引文献53

同被引文献41

引证文献6

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部