期刊文献+

基于光纤布拉格光栅传感的齿轮故障检测方法 被引量:24

A Gear Fault Detection Method Based on a Fiber Bragg Grating Sensor
原文传递
导出
摘要 针对齿轮故障难以识别的问题,提出了一种用于齿轮异常状态识别的自适应噪声补偿聚合经验模态分解方法。利用光纤布拉格光栅(FBG)传感器提取齿轮的振动信号,通过自适应补偿高斯白噪声使振动信号频谱均匀化,以消除经验模态算法分解产生的模态混叠现象。利用相关系数和峭度值组成综合评价指标来选择有效分量,并提取其特征,采用支持向量机对齿轮故障进行识别与分类。实验结果表明:所提方法能有效地识别齿轮的不同状态(正常、轻度磨损、重度磨损、点蚀、裂纹以及断齿等),识别正确率均在90%以上。 In this study, we propose a gear fault identification method based on adaptive-noise complementary ensemble empirical mode decomposition to solve the problem associated with the identification of gear faults. Initially, we used a fiber Bragg grating to extract the gear vibration signals, and uniformized the spectrum of vibration signal by adaptively adding Gaussian white noise to eliminate the mode mixing caused by the empirical modal algorithm. Subsequently, we used the correlation coefficient and the kurtosis value to obtain comprehensive evaluation indexes for selecting the effective components and extracting the features of the effective components. Finally, we used a support vector machine to identify the gear faults. The experimental results denote that the proposed method can be used to effectively identify the states of gears, including normal, mild-wear, severe-wear, pitting, cracks, broken teeth. Furthermore, the gear state identification accuracy is more than 90%.
作者 陈勇 陈亚武 刘志强 刘焕淋 Chen Yong;Chen Yawu;Liu Zhiqiang;Liu Huanlin(Key Laboratory of Industrial Internet of Things&Network Control,Ministry of Education,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Key Laboratory of Optical Fiber Communication Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2020年第3期224-233,共10页 Chinese Journal of Lasers
基金 国家自然科学基金(51977021)。
关键词 光纤光学 齿轮 故障检测 光纤布拉格光栅 经验模态分解 模态混叠 fiber optics gear fault detection fiber Bragg grating empirical mode decomposition mode mixing
  • 相关文献

参考文献6

二级参考文献40

共引文献57

同被引文献254

引证文献24

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部