期刊文献+

一种有效的不均衡样本生成方法及其在行星变速箱故障诊断中的应用 被引量:15

An Effective Method for Imbalanced Sample Generation and Its Application in Fault Diagnosis of Planetary Gearbox
下载PDF
导出
摘要 针对实际运行中行星变速箱故障数据较少、各个状态样本不均衡的问题,提出了由Wasserstein生成式对抗网络(WGAN)样本生成模型和卷积神经网络(CNN)分类模型组合的WGAN-CNN故障诊断分类模型。该模型对故障数据的频谱信号进行过采样,以扩展故障样本数量,从而更好地对故障状态进行分类。采用加州大学欧文分校人工数据集对WGAN生成模型以及经典过采样方法进行对比,并在行星变速箱故障试验台上进行验证。结果表明,样本不均衡会严重影响分类结果,而WGAN-CNN模型可以很好地扩充故障样本集,提高在故障样本稀少情况下的诊断准确率。 A fault diagnosis classification model based on WGAN-CNN is proposed for few fault data of planetary gearbox and the imbalanced samples of each state in actual operation. The proposed model is a combination of Wasserstein generative adversarial network (WGAN), a sample generation model, a convolutional neural network (CNN), and a sample classification model. The model is used to oversample the spectral signals of fault data and expand the number of fault samples, thus classifying the fault states better. UCI artificial datasets were used to compare WGAN generation model and classical oversampling methods, and verified on a planetary gearbox fault test rig. The results show that the imbalanced samples seriously affect the classification results, and the WGAN-CNN model can well expand the fault sample datasets and improve the diagnostic accuracy in the case of rare fault samples.
作者 吴春志 冯辅周 吴守军 陈汤 江鹏程 WU Chunzhi;FENG Fuzhou;WU Shoujun;CHEN Tang;JIANG Pengcheng(Department of Mechanical Engineering, Academy of Army Armored Force, Beijing 100072, China)
出处 《兵工学报》 EI CAS CSCD 北大核心 2019年第7期1349-1357,共9页 Acta Armamentarii
关键词 行星变速箱 样本不均衡 Wasserstein生成式对抗网络 卷积神经网络 planetary gearbox imbalance samples Wasserstein generative adversarial network convolutional neural network
  • 相关文献

参考文献4

二级参考文献46

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2欧阳森.基于顺序形态方法的电力信号处理方法[J].电工电能新技术,2005,24(1):45-48. 被引量:10
  • 3于德介,张嵬,程军圣,杨宇.基于EMD的时频熵在齿轮故障诊断中的应用[J].振动与冲击,2005,24(5):26-27. 被引量:27
  • 4沈路 周晓军 张文斌 等.基于形态滤波与灰色关联度的滚动轴承故障诊断.振动与冲击,2009,(11):25-28. 被引量:10
  • 5ZHANG W B,WANG H J,TENG R J.Application of rank-order morphological filter in vibration signal de-noising[C]// Proceedings-3rd International Congress on Image and Signal Processing,October 16-18,2010,Yantai,China,2010:4025-4027. 被引量:1
  • 6ZHANG W B,SU Y P,ZHOU Y J,et al.Application of rank-order morphological filter in refinement of rotor center's orbit[C]//Proceedings-4th International Congress on Image and Signal Processing,October 15-17,2011,Shanghai,China,2011:2278-2280. 被引量:1
  • 7HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time and analysis[C]//Proc.R.Soc.Lond.A,1998,454:903-995. 被引量:1
  • 8WU Z H,HUANG N E.A study of the characteristics of white noise using the empirical mode decomposition method[J].Proc.R.Soc.Lond:A,2004,460:1579-1611. 被引量:1
  • 9WU Z H,HUANG N E.Ensemble empirical mode decomposition:A noise-assisted data analysis method[J].Advances inAdaptive DataAnalysis,2009,1(1):1-41. 被引量:1
  • 10RAFIEE J,ARVANI F,HARIFI A,et al.Intelligent condition monitoring of a gearbox using artificial neural network[J].Mechanical Systems and Signal Processing,2007,21:1746-1754. 被引量:1

共引文献78

同被引文献159

引证文献15

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部