期刊文献+

应用于软件缺陷预测模型的量子粒子群优化BP算法 被引量:2

BP algorithm optimized by quantum particle swarm applied to software defect prediction model
下载PDF
导出
摘要 软件缺陷检测的主要目的是对程序模块中是否存在缺陷进行自动检测,以此有效促进软件的测试进程,使软件系统质量得到提高。针对传统软件缺陷预测模型的问题,提出在软件缺陷预测模型中使用粒子群优化BP算法。此模型使用粒子群优化算法对BP神经网络权值及阈值进行优化,通过交叉验证方法实现实验,并且同传统机器学习方法及BP神经网络等方法进行对比,实验结果表明提出的方法预测精准性比较高。 The main purpose of software defect detection is to automatically detect whether there are defects in the program module,which can promote the software testing process effectively and improve the quality of the software system.In allusion to the traditional software defect prediction model,the BP algorithm optimized by quantum particle swarm used in the software defect prediction model is proposed.This model uses particle swarm optimization algorithm to optimize the weights and thresholds of BP neural network.The experiment is carried out with cross-validation method.The method is compared with traditional machine learning method and BP neural network method.The experimental results show that the proposed method has high prediction accuracy.
作者 莫有印 MO Youyin(Shaoyang University,Shaoyang 422000,China;Chongqing Preschool Education College,Chongqing 404047,China)
出处 《现代电子技术》 北大核心 2019年第15期127-130,133,共5页 Modern Electronics Technique
关键词 软件缺陷 预测模型 量子粒子群 BP算法 交叉验证 预测精准性 software defect prediction model quantum particle swarm optimization BP algorithm cross-validation prediction accuracy
  • 相关文献

参考文献8

二级参考文献99

  • 1施久玉,胡程鹏.股票投资中一种新的技术分析方法[J].哈尔滨工程大学学报,2004,25(5):680-684. 被引量:4
  • 2梁艳春,聂义勇.从科学研究方法论看人工神经网络研究的发展[J].吉林大学学报(信息科学版),2002,20(1):59-62. 被引量:14
  • 3李立辉,田翔,杨海东,胡月明.基于SVR的金融时间序列预测[J].计算机工程与应用,2005,41(30):221-224. 被引量:12
  • 4张森,肖先赐.混沌时间序列全局预测新方法——连分式法[J].物理学报,2005,54(11):5062-5068. 被引量:25
  • 5ZHU L,CHUNG F L,WANG S T. Generalized fuzzy C-meansclustering algorithm with improved fuzzy partitions [J]. IEEETransactions on Systems,Man,and Cybernetics,Part B:Cy-bernetics,2009,39(3):578-591. 被引量:1
  • 6BAMI M,CAPPELLINI V,MECOCCI A. Comments on“a pos-sibilistic approach to clustering” [J]. IEEE Transactions onFuzzy Systems,1996,4(3):393-396. 被引量:1
  • 7Tongal H, Berndtsson R. Phase-space reconstruction and self-exciting threshold modeling approach to forecast lake water levels[J]. Stoch Environ Res Risk Assess, 2014, 28(4): 955-971. 被引量:1
  • 8Masoumi H R F, Basri M, Kassim A, et al. Comparison of estimation capabilities of the artificial neural network with the wavelet neural network in lipase-catalyzed synthesis of triethanolamine-based esterquats cationic surfactant[J]. J of Surfact Deterg, 2014, 17(2): 287-294. 被引量:1
  • 9Pandey A, Thapa K B, Prasad R, et al. General regression neural network and radial basis neural network for the estimation of crop variables of lady finger[J]. J of the Indian Society of Remote Sensing, 2012, 40(4): 709-715. 被引量:1
  • 10Bansal A, Chen T T, Zhong S. Privacy preserving back-propagation neural network learning over arbitrarily partitioned data[J]. Neural Computing & Application, 2011, 20(1): 143-150. 被引量:1

共引文献64

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部