期刊文献+

基于量子粒子群的全参数连分式混沌时间序列预测 被引量:11

Chaotic time series prediction of full-parameters continued fraction based on quantum particle swarm optimization algorithm
原文传递
导出
摘要 针对传统混沌时间序列预测模型的复杂性、低精度性和低时效性的缺点,在倒差商连分式基础上提出全参数连分式模型,并利用量子粒子群优化算法优化模型参数,将参数优化问题转化为多维空间上的函数优化问题.以二阶强迫布鲁塞尔振子和三维二次自治广义Lorenz系统为模型,通过四阶Runge-Kutta法产生混沌时间序列,并利用基于量子粒子群优化算法的全参数连分式、BP神经网络和RBF神经网络分别对混沌时间序列进行单步和多步预测.仿真结果表明,基于量子粒子群优化算法的全参数连分式结构简单、精度高、效率高,该预测模型可被推广和应用. In view of the complexity, low precision and low timeliness of traditional chaotic time series prediction models, a model about full-parameters continued fraction is proposed on the basis of the inverse difference quotient continued fraction. The quantum particle swarm optimization algorithm is used for parameters optimization of the model,thus the parameters optimization problem is transformed into the function optimization problem on the multidimensional space. Second order forced Brussels vibrator and three-dimensional quadratic autonomous generalized Lorenz system are taken as models respectively, then chaotic time series which will be used as the simulation object can be attained according to the fourth order Runge-Kutta method. Intercomparison experiments among the model about full-parameters continued fraction based on the quantum particle swarm optimization algorithm, the BP neural network and the RBF neural network are conducted on single-step and multi-step prediction for chaotic time series. The simulation results show that the fullparameters continued fraction based on the quantum particle swarm optimization algorithm has simpler structure, higher precision and higher efficiency, so this prediction model can be widely promoted and applied.
出处 《控制与决策》 EI CSCD 北大核心 2016年第1期52-58,共7页 Control and Decision
基金 国家自然科学基金项目(61463047) 自治区研究生科研创新项目(XJGRI2015029)
关键词 全参数连分式 量子粒子群优化算法 混沌时间序列预测 full-parameters continued fraction quantum particle swarm optimization algorithm chaotic time series prediction
  • 相关文献

参考文献17

  • 1王维博,冯全源.基于分层多子群的混沌粒子群优化算法[J].控制与决策,2010,25(11):1663-1668. 被引量:20
  • 2韩敏,穆大芸.回声状态网络LM算法及混沌时间序列预测[J].控制与决策,2011,26(10):1469-1472. 被引量:21
  • 3韩敏,王新迎.多元混沌时间序列的加权极端学习机预测[J].控制理论与应用,2013,30(11):1467-1472. 被引量:14
  • 4Tongal H, Berndtsson R. Phase-space reconstruction and self-exciting threshold modeling approach to forecast lake water levels[J]. Stoch Environ Res Risk Assess, 2014, 28(4): 955-971. 被引量:1
  • 5Masoumi H R F, Basri M, Kassim A, et al. Comparison of estimation capabilities of the artificial neural network with the wavelet neural network in lipase-catalyzed synthesis of triethanolamine-based esterquats cationic surfactant[J]. J of Surfact Deterg, 2014, 17(2): 287-294. 被引量:1
  • 6Pandey A, Thapa K B, Prasad R, et al. General regression neural network and radial basis neural network for the estimation of crop variables of lady finger[J]. J of the Indian Society of Remote Sensing, 2012, 40(4): 709-715. 被引量:1
  • 7Bansal A, Chen T T, Zhong S. Privacy preserving back-propagation neural network learning over arbitrarily partitioned data[J]. Neural Computing & Application, 2011, 20(1): 143-150. 被引量:1
  • 8Bashirov A E, Belaghi M J S. On application of euler’s differential method to a continued fraction depending on parameter[J]. Indian J of Pure and Applied Mathematics, 2014, 45(3): 285-295. 被引量:1
  • 9Manickavelu D, Vaidyanathan R U. Particle swarm optimization(PSO)-based node and link lifetime prediction algorithm for route recovery in MANET[J]. EURASIP J on Wireless Communications and Networking, 2014, 2014(107): 1-10. 被引量:1
  • 10Sung W T, Chiang Y C. Improved particle swarm optimization algorithm for android medical care IOT using modified parameters[J]. J of Medical Systems, 2012, 36(6): 3755-3763. 被引量:1

二级参考文献102

共引文献131

同被引文献86

引证文献11

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部