期刊文献+

改进PSO-ISVM算法的软件缺陷预测 被引量:2

Software defect prediction based on improved PSO-ISVM algorithm
下载PDF
导出
摘要 提出基于改进的粒子群优化支持向量机方法(PSO-ISVM)的测控软件缺陷预测方法。通过引入代价惩罚系数,定义粒子群优化算法中的适应度函数,利用最小化适应度函数值作为优化目标,排除大量的冗余干扰信息,提高对测控软件有缺陷模块的预测准确度,寻找支持向量机的最优参数。通过仿真实例分析测控软件有效性,并与常用缺陷预测方法进行比较,表明该模型能加快软件缺陷预测速度和提高对有缺陷模块的预测准确度。 In order to improve the prediction accuracy of software defects of support vector machine, this paper proposes a software defect prediction model based on improved support vector machine optimized by particle swarm optimization algorithm. The cost penalty coefficient is introduced to define the fitness function for PSO algorithm, and the fitness function is minimized to eliminate redundant information, to improve the software defects prediction accuracy, to find the optimal parameters of support vector machine. The validity of model is verified with data set. The simulation results show that the proposed model compared with other common defect prediction methods has improved the software defects prediction accuracy and has good nonlinear prediction ability.
作者 张飞
出处 《计算机工程与应用》 CSCD 北大核心 2016年第11期17-21,共5页 Computer Engineering and Applications
基金 河南省科技厅发展计划(No.142102110088) 河南省科技攻关项目(No.122102210430)
关键词 缺陷预测 测控软件 粒子群优化 支持向量机 defect prediction measure and control software particle swarm optimization support vector machine
  • 相关文献

参考文献14

二级参考文献35

  • 1张瑞,郝克刚.软件缺陷度量[J].计算机应用研究,2005,22(4):54-57. 被引量:10
  • 2吴斐,孙晓东,胡劲松.机场货物吞吐量的灰色预测方法研究[J].物流技术,2005,24(7):60-63. 被引量:8
  • 3刘芳,高波,Golinova S.F..灰色序列模型在物流园区货运量预测中的应用[J].成组技术与生产现代化,2005,22(4):22-24. 被引量:6
  • 4刘旸.基于机器学习的软件缺陷预测研究[J].计算机工程与应用,2006,42(28):49-53. 被引量:5
  • 5Challagulla V U B, Bastani F B, I-Ling Yen, Paul R A. Empirical assessment of machine learning based software defect prediction techniques//Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems. Washington, DC, USA, 2005:263-270. 被引量:1
  • 6Lyu Michael R. Handbook of Software Reliability Engineering. New York: IEEE Computer Society Press and McGrawHill Book Company, 1996. 被引量:1
  • 7Khoshgoftaar Taghi M, Seliya Naeen. Tree-based software quality estimation models for fault predietion//Proeeedings of the 8th International Symposium on Software Metrics. Washington, 13(3, USA, 2002x 123-128. 被引量:1
  • 8Stich Timothy Janes, Spoerre Julie K, Velasco Tomas. The application of artificial neural networks to monitoring and control of an induction hardening process. Journal of Industrial Technology, 2000, 16(1): 1-11. 被引量:1
  • 9Ohlsson Niclas, Alberg Hans. Predicting fault-prone software modules in telephone switches. IEEE Transactions on Software Engineering, 1996, 22(12): 886-894. 被引量:1
  • 10Khoshgoftaar Taghi M, Seliya Naeem. Software quantity classification modeling using the SPRINT decision tree algorithm//Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence. Washington, DC, USA, 2002:365-367. 被引量:1

共引文献70

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部