期刊文献+

基于有限状态机的类人足球机器人决策系统设计 被引量:4

Design of Human Soccer Robot Decision System Based on Finite State Machine
下载PDF
导出
摘要 RoboCup类人组(Humanoid League)机器人的决策系统是基于单目视觉自主决策的核心子系统,是决定比赛胜败的关键因素之一。本文以高效性为原则,设计了基于有限状态机的新决策系统,将复杂的机器人决策行为控制层划分为可以独立调试和优化的4个状态机模块,使机器人各状态之间的转换更加灵活,决策效率极大提高,决策算法更加易于继承和开发。将该决策系统应用于类人足球机器人平台,通过试验及比赛证明了其有效性和高效性。 The decision system of the RoboCup Humanoid League is an autonomous decision-making system based on independent monocular vision,which is the core subsystem of the robot and determines the success or failure of the game.Based on the principle of high efficiency,a new decision system based on Finite State Machine (FSM) is designed to replace the original decision system.The behavior control layer in complex robot decision-making is divided into four state machine modules,which can be debugged and optimized independently.The state transition between robots is more flexible,and the efficiency of the system is improved greatly.Moreover,the decision algorithm is inherited and developed easily.The decision-making system is applied to the humanoid soccer robot platform,and its effectiveness and efficiency have been proved by experiment and match results.
作者 盖娜 王君 王智 董明利 王子润 Gai Na;Wang Jun;Wang Zhi;Dong Mingli;Wang Zirun
出处 《工具技术》 2019年第8期101-104,共4页 Tool Engineering
基金 国家高技术研究发展计划(863计划)(2015AA043208) 北京信息科技大学2018年研究生科技创新项目(5111823212) 北京信息科技大学2018年人才培养质量提高项目(5111823205)
关键词 足球机器人 ROBOCUP 有限状态机 决策系统 soccer robot RoboCup finite state machine decision system
  • 相关文献

参考文献4

二级参考文献44

  • 1周兰凤,洪炳熔.用基于知识的遗传算法实现移动机器人路径规划[J].电子学报,2006,34(5):911-914. 被引量:27
  • 2Milind Tambe,Jafar Adibi,Yaser Al-Onaizan,Ali Erdem Gal A Kaminka,Stacy C Marsella,Ion Muslea.Building agent teams using an explicit teamwork model and learning[J].Artificial Intelligence,1999,110(4):215-239. 被引量:1
  • 3M Riedmiller,T Gabel,J Knabe,H Strasdat.Brainstormers 2D-Team Description 2005 . http://panmental.de/papers/BSTeam05.pdf,2005. 被引量:1
  • 4R S Sutton,A G Barto.Reinforcement Learning:An Introduction[M].Massachusetts:MIT Press,1999.39-46. 被引量:1
  • 5SINGH S.Agents and Reinforcement Learning[M].San Ma-teo,CA:Miller Freeman publish Inc,1997.42-77. 被引量:1
  • 6C Watkins,P Dayan.Q-learning[J].Machine Learning,1992,324(8):279-292. 被引量:1
  • 7C Claus,C Boutilier.The dynamics of reinforcement learning in cooperative multiagent systems .Proc of the 15th National Conference on Artificial Intelligence .Menlo Park CA:American Association for Artificial Intelligence,1998.746-752. 被引量:1
  • 8Zhao Jian-ming,Mao Xin-jun,Wang Ji.Developing multi-agent systems with dynamic binding mechanism .IAT'06 Proceedings of the IEEE/WIC/ACM international conference on Intelligent Agent Technology .Washington DC USA:IEEE Computer Society,2006.12-24. 被引量:1
  • 9Sarit Kraus,et al.Multiagent negotiation under time constrain[J].Artificial Intelligence,1995,75(6):297-345. 被引量:1
  • 10Myoung Hwan Choi,Bum Hee Lee.A real time optimal load distribution for multiple cooperating robots .Proceedings of 1995 IEEE International Conference on Robotics and Automation .Nagoya,1995.1211-1216. 被引量:1

共引文献28

同被引文献33

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部