期刊文献+

基于压缩感知的航空影像超分辨率重建 被引量:2

Super Resolution Reconstruction of Aerial Images Based on Compressed Sensing
下载PDF
导出
摘要 详细介绍了压缩感知的研究现状和发展趋势,对压缩感知理论的原理、稀疏基的选取、测量矩阵的构造和信号的重建进行了详细阐述。在图像超分辨率重建技术的基本模型的基础上,基于压缩感知的图像超分辨率重建模型,使用小波基作为稀疏基,并使用改进的正则化正交匹配追踪算法对单幅图像进行超分辨率重建。最后,进行仿真实验,实现了基于压缩感知的单幅图像超分辨率重建,并且和传统的超分辨率重建算法进行对比。结果表明,基于压缩感知的图像超分辨率重建算法,取得了比较好的效果。 This article introduces the research status and trend of development of CS,and then provides the principle of CS including signal sparse representation,design of measurement matrix and reconstruction algorithm.Next,the article introduces a SR image reconstruction framework.On this basis,under a SR image reconstruction framework based on CS,uses wavelet basis and modified Regularize Orthogonal Matching Pursuit to reconstruct a single image.Eventually,experiment shows that the SR algorithm based on compressive sensing can obtain better reconstruction result.
作者 钟蕾 范冲 ZHONG Lei;FAN Chong(School of Geosciences and Info-Physics,Central South University,Changsha 410083,China)
出处 《测绘与空间地理信息》 2019年第7期49-52,共4页 Geomatics & Spatial Information Technology
基金 国家重点研发计划“一体化综合减灾智能服务系统”项目(2016YFC0803108)资助
关键词 压缩感知 超分辨率 影像重建 小波基 compressive sensing super-resolution reconstruction wavelet basis
  • 相关文献

参考文献4

二级参考文献126

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415. 被引量:1

共引文献772

同被引文献12

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部