摘要
红外图像普遍存在分辨率低、细节模糊和视觉效果差的问题,使其难于直接应用在PCB故障诊断系统中。针对这一问题,本文提出了一种可充分利用红外图像层次特征的混合残差密集网络超分辨率重建算法。首先,使用卷积神经网络提取原始低分辨率图像的浅层特征信息;其次,设计多路径混合残差密集连接块,进一步提取更丰富的深层特征信息;最后,引入全局特征融合与残差学习自适应的学习并整合全局特征信息,应用转置卷积上采样完成红外图像的超分辨率重建。实验结果表明,本文算法能够有效提高重建后红外图像分辨率,使细节信息得到改善、视觉效果得到提升。基于公共/自建数据集得到的重建后图像峰值信噪比和结构相似性指标分别达到42.17 dB/39.32 dB和0.9503/0.9466,优于文中列举的双三次内插法、SRCNN和ESPCN模型,重建性能得到明显提高。
Infrared image has the common problems of low resolution,blurry details and poor visual effect,making it difficult to directly apply them in PCB fault diagnosis system.To solve these problems,a hybrid residual dense network(HRDN)infrared image super-resolution reconstruction model is proposed.Firstly,the CNN is used to extract shallow feature information of original low-resolution(LR)image.Secondly,many hybrid residual dense blocks(HRDBs)with multi-path structure are designed to extract more abundant deep feature information.Thirdly,global feature fusion and residual learning are used to adaptively learn global hierarchical features.Finally,deconvolution layers are integrated into the network to learn the up-sampling filters and to complete the reconstruction.The experimental results show that the proposed algorithm can effectively improve the reconstructed infrared image resolution and the detail information,and enhance the visual effect.The PSNR and SSIM of the open databases and self-collected databases are 42.17 dB/39.32 dB and 0.9503/0.9466 respectively,which are superior to the bicubic interpolation,SRCNN and ESPCN models listed in the paper.Reconstruction performance has been significantly improved.
作者
郝建新
张亦驰
王力
HAO Jian-xin;ZHANG Yi-chi;WANG Li(Civil Aviation University of China,Engineering Technology Training Center,Tianjin 300300,China;College of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China;Vocational and Technical College,Civil Aviation University of China,Tianjin 300300,China)
出处
《激光与红外》
CAS
CSCD
北大核心
2022年第2期287-294,共8页
Laser & Infrared
基金
国家自然科学基金委与中国民用航空局联合资助项目(No.U1733119)
中央高校基本科研业务费项目中国民航大学专项(No.3122019113)资助。