期刊文献+

基于目标检测的海上舰船图像超分辨率研究 被引量:1

Research on Super-Resolution of Marine Ship Image Based on Target Detection
下载PDF
导出
摘要 针对海上舰船图像有效像素在整体像素中占比小的问题,提出一种基于目标检测网络的超分辨率方法。该方法包含两个阶段,结合bicubic变换,逐步地将图像的清晰度从粗到细地进行恢复。首先,第一阶段通过目标检测网络,检测出原图像中需要超分辨率的区域,然后,第二阶段将对应区域通过bicubic变换调整至指定分辨率,而后通过生成对抗网络增强图像细节。最终在自建数据集上的实验结果表明,与传统方法和现有基于深度神经网路的超分辨率重建算法相比,该算法不仅图像视觉效果最好,而且在数据集上的峰值信噪比(PSNR)平均提高了0.79 dB,结构相似性(SSIM)平均提高了0.04,证明了该算法的有效性。 Aiming at the problem that the effective pixels in the image of marine ships account for a small proportion in the total pixels,a super-resolution method based on target detection network is proposed.The method consists of two stages,combining with the bicubic transform,to restore the sharpness of the image from coarse to fine step by step.Firstly,in the first stage,super-resolution regions in the original image are detected through the target detection network.Then,in the se-cond stage,the corresponding regions are adjusted to the specified resolution by bicubic trans-formation,and then the image details are enhanced by generating the countermeasure network.Finally,the experimental results on the self-built dataset show that compared with the traditional method and the existing super-resolution reconstruction algorithm based on deep neural network,this algorithm not only has the best visual effect,but also improves the peak signal-to-noise ratio(PSNR)of the dataset by an average of 0.79 dB and the structural similarity(SSIM)by an average of 0.04,which proves the effectiveness of the algorithm.
作者 张坤 李天伟
出处 《图像与信号处理》 2019年第3期121-129,共9页 Journal of Image and Signal Processing
  • 相关文献

参考文献2

二级参考文献58

  • 1肖创柏,段娟,禹晶.序列图像的POCS超分辨率重建方法[J].北京工业大学学报,2009,35(1):108-113. 被引量:13
  • 2庞亚红,毛幼菊.一种基于凸集投影(POCS)的数字图像超分辨率重建算法[J].计算机工程与应用,2005,41(4):69-71. 被引量:12
  • 3卓力;王素玉;李晓光.图像/视频的超分辨率复原[M]北京:人民邮电出版社,2011102-105. 被引量:1
  • 4PARK S C,PARK M K,KANG M G. Super-resolution im-age reconstruction : a technical overview [ J ]. IEEE signal processing magazine, special issue of super-resolution image reconstruction, 2003,20 ( 3 ) : 21-36. 被引量:1
  • 5TSAI R Y,HUANG T S,TSAI R Y,et al. Muhiframe image restoration and registration [ C ]//Advances in Computer Vi- sion and Image Processing. [ S. 1.] :IEEE, 1984:317-339. 被引量:1
  • 6ZHOU F,YANG W, LIAO Q. A coarse-to-fine subpixel registration method to recover local perspective deformation in the application of image super - resolution [ J ]. IEEE transactions on image processing, 2012, 21 ( 1 ) :53-66. 被引量:1
  • 7MILCHEVSKI A, IVANOVSKI Z, MUSTAFA B. Machine learning based supper-resolution algorithm robust to regis- tration errors [ C ]//Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE). [S. 1. ] :IEEE,2011:326-331. 被引量:1
  • 8VRIGKAS M, NIKOU C, KONDI L P. On the improvement of image registration for high accuracy super- resolution [ C ]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . [ S. 1. ] : IEEE, 2011 : 981-984. 被引量:1
  • 9IRANI M, PELEG S. Improving resolution by image regis- tration[ J]. CVGIP: graphical models & image processing, 1991, 53(3) :231-239. 被引量:1
  • 10DAI S, HAN M,XU W, et al. Soft edge smoothness prior for alpha channel super resolution [ C ]//IEEE Conference on Computer Vision & Pattern Recognition. [ S. 1. ] : IEEE, 2007 : 1-8. 被引量:1

共引文献13

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部