期刊文献+

基于非下采样双树复轮廓波与自适应分块的红外与可见光图像融合 被引量:8

Fusion of Infrared and Visible Images Based on Non-subsampled Dualtree Complex Contourlet and Adaptive Block
下载PDF
导出
摘要 为提高融合效率,解决基于多尺度变换的融合方法中融合系数选择错误的问题,提出一种红外与可见光图像融合方法.首先用非下采样双树复轮廓波变换将源图像分解为低频与高频部分;然后对低频系数采用自适应尺寸分块法进行融合,图像块的尺寸由改进的果蝇算法优化求解,精细化处理低频融合结果,得到一幅能精确到每个系数来源的标签图;再利用高频分量的邻域系数差结合该标签图对高频系数进行融合;最后重构得到融合图像.实验结果表明,该算法能够提高融合速度,解决了空域分块融合容易产生块效应的问题. In order to improve the fusion efficiency and solve the problem of wrong selection of fusion coefficients in the fusion method based on multi-scale transform,a method based on non-subsampled dual-tree complex contourlet transform combined with adaptive block is proposed for infrared and visible image fusion.Firstly,the source image is decomposed into low-frequency and high-frequency parts by non-subsampled dual-tree complex contourlet transform.For the low frequency coefficients,an adaptive block-based fusion technique is applied,where the optimal block size can be calculated by using the improved drosophila algorithm,and the low-frequency fusion results are refined to obtain a label map which can accurately indicate the origin information of each pixel.Then,the neighborhood coefficient difference of the high-frequency component is used to combine the label map height.Finally,the fused image is reconstructed.The experimental results demonstrate that the proposed method can accelerate the process of fusion and solve the problem of block effect in spatial block fusion.
作者 邓辉 王长龙 胡永江 张玉华 DENG Hui;WANG Chang-long;HU Yong-jiang;ZHANG Yu-hua(Department of UAV Engineering,Campus in Shijiazhuang,Army Engineering University,Shijiazhuang 050003,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2019年第7期130-140,共11页 Acta Photonica Sinica
基金 军队科研项目(No.ZS20157132A12008) 国防预研基金(No.2004052)~~
关键词 图像融合 非下采样双树复轮廓波 自适应分块 标签图 果蝇优化算法 Image fusion Non-subsampled dual-tree complex contourle Adaptive block Label map Fruit fly optimization algorithm
  • 相关文献

参考文献15

二级参考文献138

共引文献198

同被引文献69

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部