期刊文献+

基于对比度增强与多尺度边缘保持分解的红外与可见光图像融合 被引量:18

Infrared and Visible Image Fusion Based on Contrast Enhancement and Multi-scale Edge-preserving Decomposition
下载PDF
导出
摘要 在低照度环境下拍摄的可见光图像可视性较差,若将其与红外图像直接融合会导致融合结果清晰度不理想。针对这一问题,该文提出一种基于对比度增强与多尺度边缘保持分解的图像融合方法。首先,在融合之前采用基于导向滤波的自适应增强算法提高可见光图像中暗区内容的可视性。其次,通过一种尺度感知边缘保持滤波器对输入图像进行多尺度分解。再次,应用频率调谐滤波构造显著图。最后,利用由导向滤波生成的权重图重构融合图像。实验结果表明,所提方法不仅可以使细节信息更突出,而且还能够有效地抑制伪影。 The visibility of the visible images is not good under the poor lighting condition.If the visible and infrared images are fused directly,the resolution of the fused images is not ideal.In order to solve this problem,a modified infrared and visible image fusion approach based on contrast enhancement and multi-scale edge-preserving is proposed.Firstly,an adaptive enhancement method based on the guided filter is adopted to enhance the visibility of dark region content in the visible image.Input images are then decomposed with a scale-aware edge-preserving filter.Subsequently,saliency maps of infrared and visible images are calculated on the basis of frequency-tuned filtering.Finally,the fused images are reconstructed with the weighting maps.Experiments show that the proposed scheme can not only make the detail information more prominent,but also suppress the artifacts effectively.
作者 朱浩然 刘云清 张文颖 ZHU Haoran;LIU Yunqing;ZHANG Wenying(School of Electronics and Information Engineering, Changchun University of Science and Technology Changchun 130022, China;Photoelectric Engineering College, Changchun University of Science and Technology, Changchun 130022, China;Academy of Opto-electronics, Chinese Academy of Sciences, Beijing 100094, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第6期1294-1300,共7页 Journal of Electronics & Information Technology
关键词 图像融合 对比度增强 多尺度边缘保持分解 导向滤波器 Image fusion Contrast enhancement Multi-scale edge-preserving decomposition Guided filter
  • 相关文献

参考文献6

二级参考文献86

  • 1朱宪伟.基于结构特征的异源图像配准技术研究[D].长沙:国防科学技术大学,2009. 被引量:1
  • 2ZHANG L, ZHANG D, MOU X, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386. 被引量:1
  • 3DAMERA-VENKATA N, KITE T D, GEISLER W S, et al. Image quality assessment based on a degradation model[J]. IEEE Transactions on Image Processing, 2000, 9(4): 636-650. 被引量:1
  • 4CHANDLER D M and HEMAMI S S. VSNR: a wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284-2298. 被引量:1
  • 5WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. 被引量:1
  • 6WANG Z, SIMONCELLI E P, and BOVIK A C. Multi-scale structural similarity for image quality assessment[C]. Proceedings of the 37th IEEE Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, 2003: 1398-1402. 被引量:1
  • 7KNILL D C and POUGET R. The Bayesian brain: the role of uncertainty in neural coding and computation[J]. Trends in Neuroscience, 2004, 27(12): 712-719. 被引量:1
  • 8FRISTON K. The free-energy principle: a unified brain theory?[J]. Nature Reviews Neuroscience, 2010, 11(2): 127-138. 被引量:1
  • 9ZHAI G, WU X, YANG X, et al. A psychovisual quality metric in Free-Energy principle[J]. IEEE Transactions on Image Processing, 2012, 21(1): 41-52. 被引量:1
  • 10WU J J, LIN W S, and SHI G G. Perceptual quality metric with internal generative mechanism[J]. IEEE Transactions on Image Processing, 2013, 22(1): 43-54. 被引量:1

共引文献127

同被引文献127

引证文献18

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部