期刊文献+

基于自适应稀疏表示的多聚焦图像融合 被引量:6

Multi-focus Image Fusion Based on Adaptive Sparse Representation
下载PDF
导出
摘要 提出了一种基于自适应稀疏表示的多聚焦图像融合算法,该算法根据图像的结构特征将子块分为相似模型、平滑模型和细节模型.三种模型采取不同的处理,相似模型直接放入融合图像,平滑模型和细节模型分别采用加权平均法和稀疏表示法进行融合,从而减少了稀疏编码的图像块数,以提高融合效率.实验结果表明,该方法在保证融合图像主观效果和客观性能指标均优的的情况下,有效缩短了运算时间. A multi-focus image fusion algorithm is given out,which is based on adaptive sparse representation.According to structure characteristics of image,the algorithm can divide sub-blocks into three models,which are the similar model,the smouth model and the detailed model.The three models get different process mode.The similar model is put into the fusion image directly.The smouth model uses the weighted average method and the detacled model uses sparse representation to realize fusion,so the quantity of blocks for sparse coding is reduced and the efficiecy is improved.The experiment results show that the way can shorten the operation time effectively,at the same time if can guarantee that the subjective effect and objective performance indexes of fused image are both optimal.
出处 《微电子学与计算机》 CSCD 北大核心 2015年第6期22-26,31,共6页 Microelectronics & Computer
基金 国家自然科学基金(61362021) 广西自然科学基金(2013GXNSFDA019030 2013GXNSFAA019331 2012GXNSFBA053014 2012GXNSFAA053231 2014GXNSFDA118035) 广西科技开发项目(桂科攻1348020-6 桂科能1298025-7) 广西教育厅项目(201202ZD044 2013YB091) 桂林市科技攻关(20130105-6 20140103-5) 桂林电子科技大学研究生教育创新计划资助项目(GDYCSZ201462)
关键词 稀疏表示 多聚焦图像融合 自适应 梯度值 sparse representation multi-focus image fusion adaptive gradient value
  • 相关文献

参考文献4

二级参考文献48

  • 1Burt P J, Adelson E H. The laplacian pyramid as a compact image code[J]. IEEE Trans. Commun., 1983,31(4) : 532 - 540. 被引量:1
  • 2Mallat S G. A theory for multi - resolution signal decomposition: the wavelet representation [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7) :674 - 693. 被引量:1
  • 3Wang Zhou,Bovik A C.A universal image quality index[J].IEEE Signal Processing Letters,2002,9(3):81-84. 被引量:1
  • 4WangZhou,Bovik A C,Sheikh H R,et al.Imagequality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. 被引量:1
  • 5Gemma Piella.New quality measures for image fusion[C]//The 7th International Conference on Information Fusion.Sweden,Stockholm,2004:542-546. 被引量:1
  • 6H. Wang, L. Wei, C. He. An adaptive image fusion al- gorithm based on ICA [ C]. Computer, Mechatronics, Control and Electronic Engineering (CMCE), Chang- chun, China, Aug. 24-26, 2010: 25-28. 被引量:1
  • 7N. Cvejic, D. Bull, N. Canagarajah. Region-based mul- timodal image fusion using ICA bases [J]. IEEE Sensors Journal, 2007, 7 ( 5 ) : 743-751. 被引量:1
  • 8M. Nikolaos and S. Tania. Optimal Contrast Correction for ICA-Based Fusion of Multimodal Images. IEEE Sen- sors Journal, 2008, 8(12) :2016-2025. 被引量:1
  • 9G. Yang, X. Xu, H. Man. Optimum image fusion via sparse representation [ C ]. Wireless and Optical Commu- nications Conference (WOCC) , Newark, N J, 2011 : 1- 4. 被引量:1
  • 10B. Yang, S. Li. Muhifocus Image Fusion and Restorationwith Sparse Representation [ J ] IEEE Trans. on Instru- mentation and Measurement, 2010, 59 (4) : 884- 891. 被引量:1

共引文献63

同被引文献38

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部