期刊文献+

基于多尺度字典学习的图像融合方法 被引量:4

An Image Fusion Algorithm Based on Multi-Scale Dictionary Learning
下载PDF
导出
摘要 将小波域多尺度分析的思想和图像域单尺度稀疏表示的思想有效结合,提出基于多尺度字典学习的图像融合方法。首先将训练图像变换到小波域,分别对各个子带系数训练字典;根据训练的字典求解并融合源图像各个子带的稀疏表示系数;经过逆小波变换重构融合图像。提出的方法综合了学习字典的稀疏特性和小波分析的多分辨率特性。实验结果表明较现有基于图像域字典学习的融合方法和基于小波域多尺度分析的融合方法均具有更优的融合效果。 We combine the multi-scale analysis in wavelet domain with the single-scale sparse representation in image domain and propose an image fusion algorithm based on multi-scale dictionary learning. We transform the trained images into wavelet domain and train the dictionary for each sub-band dictionary. We use the trained dic- tionary to solve and fuse the sparse representation coefficient of each sub-band of a source image. The fused image is reconstructed through the inverse wavelet domain. Our algorithm combines the sparse character of a learned dictionary with the multi-resolution character of wavelet analysis. The experimental results, given in Fig. 2 and Table 1, and their analysis show that our image fusion algorithm outperforms those based on the learned dictionary in image domain and multi-scale analysis in wavelet domain respectively.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第5期793-797,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(61075014) 航天支撑基金(2011XW080001C080001) 西北工业大学博士论文创新基金(CX201318)资助
关键词 图像融合 多尺度字典学习 稀疏表示 K—SVD algorithms, image fusion, image processing, wavelet transforms image domain, muli-scale analysis, muli-scale dictionary learning, sparse representation, wavelet domain
  • 相关文献

参考文献8

  • 1Mahyari A G, Yazdi M. Panchromatic and Multispectral Image Fusion Based on Maximization of Both Spectral and Spatial Simi- larities. IEEE Transa on Geoscience and Remote Sensing, 2011,49(6) : 1-10. 被引量:1
  • 2Yang B, Li S T. Multifocus Image Fusion and Restoration with Sparse Representation. IEEE Trans on Instrumentation and Measurement, 2010, 4 (59) : 884-892. 被引量:1
  • 3Yang B, Li S T. Pixel-Leve| Image Fusion with Simultaneous Orthogonal Matching Pursuit. Information Fusion, 2012, 1 (13) : 10-19. 被引量:1
  • 4严春满,郭宝龙,易盟.自适应字典学习的多聚焦图像融合[J].中国图象图形学报,2012,17(9):1144-1149. 被引量:9
  • 5Yu Nannan, Qiu T S, Bi F. Image Features Extraction and Fusion Based on Joint Sparse Representation. IEEE Journal of Se- lected Topics in Signal Processing, 2011,5 (5) : 1074-1082. 被引量:1
  • 6Ophir B, Lustig M, Elad M. Muhi-Scale Dictionary Learning Using Wavelets. IEEE Journal of Selected Topics in Signal Pro- cessing, 2011, 5(5) : 1014-1024. 被引量:1
  • 7Rubinstein R, Zibulevsky M, Elad M. Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Representation. IEEE Trans on Signal Processing, 2010, 58(3) : 1553-1564. 被引量:1
  • 8Tropp J A, Gilbert A C, Strauss M J. Algorithms for Simultaneous Sparse Approximation. Part I: Greedy Pursuit. Signal Pro- cessing, 2006, 86(3): 572-588. 被引量:1

二级参考文献12

共引文献8

同被引文献38

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部