期刊文献+

考虑测量误差和随机效应的设备剩余寿命预测 被引量:9

Remaining lifetime prediction for device with measurement error and random effect
下载PDF
导出
摘要 针对非线性退化设备的剩余寿命预测问题,尚未系统研究考虑测量误差和随机效应的退化建模、先验参数估计及相应的剩余寿命预测方法。首先建立考虑测量误差和随机效应的非线性Wiener退化模型;利用同类设备历史监测数据,基于期望最大化算法估计出退化模型中固定系数和随机系数先验分布;采用状态空间模型描述目标设备当前监测状态,基于Kalman滤波算法迭代估计出随机系数后验分布和当前真实退化状态;利用全概率公式,推导出考虑隐含状态估计不确定性的设备剩余寿命的概率密度函数;仿真实例分析表明,所提方法较现有方法在参数估计误差和剩余寿命预测精度上具有一定优势。 For the problem of remaining life (RL) prediction of the nonlinear degradation device, existing methods have not systematically studied the degradation modeling with measurement error and random effect, the priori parameter estimation, and the corresponding RL prediction method. A nonlinear Wiener degradation model is built considering measurement error and random effect. By using historical condition monitoring (CM) data of similar device, the expectation maximum algorithm is applied to obtain the estimates of the fixed coefficient and the priori distribution of the random coefficients in the degradation model. The state space model is used to describe the current CM state of the target device. The Kalman filter algorithm is applied to iteratively obtain the posterior distribution of the random coefficients and the current real degradation state. The full -probability formula is used to deduce the probability density function of the RL considering the estimation uncertainty of the implicit state. The simulation example analysis shows that this method has advantages over the existing methods in parameter estimation error and RL prediction accuracy.
作者 蔡忠义 陈云翔 郭建胜 王泽洲 邓林 CAI Zhongyi;CHEN Yunxiang;GUO Jiansheng;WANG Zezhou;Deng Lin(Equipment Management & UAV Engineering College, Air Force Engineering University, Xi’an 710051, China;The 29th Research Institute, China Electronics Technology Group Corporation, Chengdu 610036, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2019年第7期1658-1664,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(71601183) 中国博士后科学基金(2017M623415) 国家国防科工局技术基础项目(JSZL2016210B001)资助课题
关键词 剩余寿命预测 非线性退化模型 测量误差 随机效应 remaining life (RL) prediction nonlinear degradation model measurement error random effect
  • 相关文献

参考文献6

二级参考文献51

  • 1曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:279
  • 2.IARDINE A K S, LIN D, BANJEVIC D. A review on machineD, diagnostics and prognostics implementing condition-based maintenance [J]. Mechanical systems and signal processing, 2006, 20(7): 1483-1510. 被引量:1
  • 3SUN B, ZENG S K, KANG R, PECHT M G. Benefits and challenges of system prognostics [J]. IEEE Transactions on Reliability, 2012, 61(2): 323-334. 被引量:1
  • 4ZIO E, COMPARE M. Evaluating maintenance policies by quantitative modeling and analysis [J]. Reliability Engineering & System Safety, 2013, 109: 53-65. 被引量:1
  • 5SI Xiao-sheng, WANG Wen-bin, HU Chang-hua, ZHOU Dong-hua. Remaining useful life estimation A review on the statistical data driven approaches [J]. European Journal of Operational Research, 2011,213(1): 1-14. 被引量:1
  • 6GEBRAEEL N Z, LAWLEY M A, LI RONG, RYAN J K. Residual-/ife distributions from component degradation signals: A Bayesian approach [J]. lie Transactions, 2005, 37(6): 543-557. 被引量:1
  • 7GEBRAEEL N Z. Sensory-updated residual Life distributions for components with exponential degradation patterns [J]. IEEE Transactions on Automation Science and Engineering, 2006, 3: 382- 393. 被引量:1
  • 8KAISER K A, GEBRAEEL N Z. Predictive maintenance management using sensor-based degradation models [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39(4): 840-849. 被引量:1
  • 9PENG C Y, TSENG S T. Mis-specification analysis of linear degradation models [J]. IEEE Transactions on Reliability, 2009, 58(3): 444-455. 被引量:1
  • 10PENG C Y, TSENG S T. Statistical lifetime inference with Skew-Wiener linear degradation models [J]. IEEE Transactions on Reliability, 2013, 63(2): 338-350. 被引量:1

共引文献91

同被引文献91

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部