期刊文献+

航空液压泵磨损状况预测 被引量:16

Wear condition prediction of hydraulic pump
下载PDF
导出
摘要 磨损是航空液压泵典型的渐进性故障之一,因磨损量难以测量,对磨损状况进行准确的预测比较困难.针对上述问题,提出了基于多尺度数据的支持向量机预测方法,该方法将支持向量机用于时间序列预测的基本理论和数据多尺度分解、相空间重构方法结合,能更有效地挖掘时间序列的内在联系及变化规律.采用回油流量作为反映航空液压泵磨损状况的敏感信号,将其分解为趋势项和随机项,采用多尺度支持向量机作等维信息一步预测和多步预测,利用网格方法对预测模型参数寻优.对比传统支持向量机算法分析其预测精度,结果表明:多尺度支持向量机模型预测精度更高,适于中长期预测. Wear is a typical progressive failure of aero hydraulic pump.It is difficult to measure wear loss.To solve precision wear condition prediction problem,multi-dimensional support vector machine(SVM) prediction method was proposed,based on theoretical basis of SVM applied to time series prediction,multi-dimensional data decomposition and phase space reconstruction.The inner relationship of time series can be mined and reflected more effectively by this method.Oil-return flow was chosen to reflect the wear condition of hydraulic pump and was decomposed into trend data and random data.Multi-dimensional SVM was applied to predict oil-return flow of the aero hydraulic pump one-step ahead and multi-step ahead with grid search optimization method.The results show that multi-dimensional SVM model has higher prediction precision and is very suitable for long-term forecasting compared with the predicted results of traditional SVM.
作者 葛薇 王少萍
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第11期1410-1414,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家863计划资助项目(2009AA04Z412) 航空创新基金资助项目(08D51010) 111计划资助项目
关键词 航空液压泵 磨损预测 多尺度支持向量机 数据分解 相空间重构 aero hydraulic pump wear prediction multi-dimensional support vector machine data decomposition phase space reconstruction
  • 相关文献

参考文献11

  • 1赵大庆著..液压泵污染磨损与控制[M].北京:煤炭工业出版社,1993:124.
  • 2张文超..机载液压泵源健康管理系统研究[D].北京航空航天大学,2008:
  • 3Wang Wenchuan, Chau Kwok-Wing, Cheng Chuntian, et al. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series [ J ]. Journal of Hydrology, 2009,374 ( 3 - 4 ) : 294 - 306. 被引量:1
  • 4Hippert H S, Pedreira C E, Souza R C. Neural networks for short-term load forecasting: a review and evaluation [J]. Power Systems, 2001,16( 1 ) :44 - 55. 被引量:1
  • 5Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning method [ M ]. Beijing: China Machine Press,2005 : 1 - 124. 被引量:1
  • 6Peng Xinjun,Wang Yifei. A normal least squares support vector machine(NLS-SVM) and its learning algorithm [J]. Neurocomputing, 2009,72( 16 - 18) :3734 -3741. 被引量:1
  • 7Li Lin, Ji Hongbing. Signal feature extraction based on an improved EMD method [ J ]. Measurement, 2009,42 ( 5 ) : 796 - 803. 被引量:1
  • 8Osowski S, Garanty K. Forecasting of the daily meteorological pollution using wavelets and support vector machine [J]. Engineering Applications of Artificial Intelligence, 2007,20 ( 6 ) : 745 - 755. 被引量:1
  • 9康卓,黄竞伟,李艳,康立山.复杂系统数据挖掘的多尺度混合算法[J].软件学报,2003,14(7):1229-1237. 被引量:18
  • 10杨叔子,吴雅,轩建平等著..时间序列分析的工程应用 下 第2版[M].武汉:华中科技大学出版社,2007:305.

二级参考文献6

  • 1Iba H, Sasaki T. Using genetic programming to predict financial data. In: Angeline PJ, ed. Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999. 244~251. 被引量:1
  • 2Harrier C, Frohlich J. Generalized function analysis using hybrid evolutionary algorithms. In: Angeline PJ, ed. Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999. 287~294. 被引量:1
  • 3Yoshihara I, Numata M, Sugawara K, Yamada S, Abe K. Time series prediction model building with BP-like parameter optimization. In: Angeline PJ, ed. Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999.295~301. 被引量:1
  • 4Ferreira AR, da Sih, s. Evolving best-basis representations. In: Angeline PJ, ed. Proceedings of the Congress on Evolutionary Computation, Vol 1. Piscataway: IEEE Press, 1999. 302~309. 被引量:1
  • 5Kang LS, Li Y, Chert YP. A tentative research on complexity of automatic programming. Wuhan University Journal of Natural Sciences, 2001,6(1-2):59~62. 被引量:1
  • 6Cao HQ, Keng LS, Chert YP. Evolutionary modeling of systems of ordinary differential equations with genetic programming.Genetic Programming and Evolvable Machines, 2000,1(4).309--337. 被引量:1

共引文献17

同被引文献149

引证文献16

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部