期刊文献+

镍基高温合金中γ/θ相界面性能的数值模拟 被引量:2

Numerical Simulation for γ/θ Interface Properties of Ni Base Superalloy
原文传递
导出
摘要 采用分子动力学法以第二近邻嵌入原子势模型(2NN MEAM)的原子间相互作用势为输入参数,研究了Ni-Al-V高温合金中γ/θ-DO22相不同成分下的界面结构,并计算了界面处不同成分下的界面能和界面分离能。研究表明:随A1原子浓度增大,界面能增大,界面分离能减少:随V原子浓度增大,界面能先增大后减小;而原子浓度改变对界面分离能影响较小;同时表明界面能和界面分离能与界面迁移密切相关。该结果可用于对Ni-Al-V高温合金沉淀过程界面的成分偏析,界面迁移等动态行为做进一步研究,对高温合金设计有极大的指导意义。 By using molecular dynamics method with the second nearest neighbor modified embedded-atom method (2NN MEAM) interatomic potential,we studied the γ/θ-DO22 interfacial structure of Ni-Al-V superalloy at different compositions,and calculated the interfacial energy and the work of separation on the interfaces.The research shows that with the Al atom concentration increasing,the interfacial energy increases while the work of separation decreases;with the concentration of V atoms increasing,the interfacial energy increases first and then decreases;but the change of atomic concentration has little effect on the work of separation;and the interfacial energy and the work of separation are closely related to the interfacial migration.The results can be used to further study the dynamic behavior of Ni-Al-V superalloys in the process of precipitation,such as the composition segregation and interfacial migration,so the research has great guiding significance to the alloy design.
作者 董卫平 王琳琳 王晓明 张明义 陈铮 Dong Weiping;Wang Linlin;Wang Xiaoming;Zhang Mingyi;Chen Zheng(Zhejiang Normal University,Jinhua 321004,China;China Academy of Engineering Physics,Mianyang 621900,China;State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi'an 710072,China)
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2019年第5期1529-1533,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51501165) 浙江省自然科学基金一般项目(LY18E010002,LY17E010002)
关键词 界面 界面能 界面分离能 界面迁移 镍基高温合金 interface interfacial energy work of separation interfacial migration Nickel base superalloy
  • 相关文献

参考文献3

二级参考文献35

  • 1Wang S Q, Ye H Q. Current Opinion in Solid State Materials[J], 2006(10): 26. 被引量:1
  • 2Gronhagen K, Agren J. Acta Materialia[J], 2007, 55:955. 被引量:1
  • 3Andrew J D, Christopher A. Acta Materialia[J], 2007, 55: 4221. 被引量:1
  • 4Zheng L P, Zhu D Z, Jiang B Yet al. Nuclear Instruments and Methods in Physics Research B[J], 2001, 173:441. 被引量:1
  • 5Wynblatt P, Shi Z. Journal of Materials Science[J], 2005, 40: 2765. 被引量:1
  • 6Zhang H, Du D X, Srolovitz D Jet al. Applied Physics Letters[J], 2006, 88:121 927. 被引量:1
  • 7Peng P, Soh A K, Yang R et al. Computational Materials Science[J], 2006, 38:354. 被引量:1
  • 8Li Y S, Chen Z, Lu Y Let al. Chinese Physics[J], 2007, 16(3): 0854. 被引量:1
  • 9Hou H, Zhao Y H, Zhao Y H. Materials Science and EngineeringA[J], 2009, 499:204. 被引量:1
  • 10Khachaturyan A G. Theory of Structural Transformations in Solids[M]. New York: Wiley, 1983. 被引量:1

共引文献6

同被引文献9

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部