摘要
材料科学与工程领域中,相场法是计算材料学的重要分支。相场法在模拟与预测材料微观组织、形貌演化等方面的作用越来越突出。材料微观组织决定其宏观服役性能。商业合金材料性能的改变与控制,在很大程度上依赖于精细调控固态相变过程以期获得理想的微组织图斑。实验对于合金材料固态相变的分析侧重于结果的观测与讨论,对于相变动力学过程研究较少。基于微观扩散理论的相场模型在原子尺度上研究合金固态相变过程,这显著不同于其它的相场模型。本文系统综述了微观相场模型在合金固态相变方面的研究思路及研究成果。在此基础上,阐述了当前研究的难点,展望了微观相场在固态相变领域的发展前景,最后特别指出了微观相场在合金相变方面未来的研究方向。
In the field of materials science and engineering,the phase-field method is an indispensable component of computational materials science.The phase-field method has incomparable advantages in simulating and predicting the microstructural and morphological evolutions in materials.The microstructure determines the service performances of materials.In fact,the manipulation of various properties of the solid materials principally depends on the anticipative material microstructures generated through the subtle control on phase transition process.In general,the experimental analysis of the solid-state phase transformation of alloy materials prevailingly focuses on the observation and discussion of the results,but less concerns on the kinetics of phase transitions.The phase-field method based on microscopic diffusion theory is capable of exploring the phase transformation process at the atomic scale,for which other phase-field models are powerless to achieve.This paper systematically reviewed the research ideas and results about the application of microscopic phase-field model in solid-state phase transformations.On this basis,the difficulties of current research were expounded,and the development prospect of microscopic phase-field in the field of solid-state phase transition was prospected.Finally,we forecasted the possible developments of microscopic phase-field in the foreseeable future.
作者
王锟
王永欣
卫普
卢艳丽
张静
陈铮
Wang Kun;Wang Yongxin;Wei Pu;Lu Yanli;Zhang Jing;Chen Zheng(State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an 710072,China)
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2019年第11期3770-3780,共11页
Rare Metal Materials and Engineering
基金
国家自然科学基金(51475378)
关键词
相场法
合金固态相变
计算模拟
合金
phase-field
solid-state phase transformation
computational simulation
alloys