期刊文献+

基于多种模型的递进式智能SOC估算 被引量:7

Progressive intelligence estimation of SOC based on multiple models
下载PDF
导出
摘要 为了精确估算电动汽车锂离子电池的荷电状态(SOC),采用多种等效电路模型,建立空间状态方程,通过带遗忘因子递推最小二乘法实时在线辨识电池模型参数,动态实时更新电池模型状态方程,利用Matlab对实验工况进行仿真,采用基于电池电路模型的联合FFRLS-EKF算法,在运算过程中加入电池健康状态(state of health,简称SOH)因子,得到的SOC估算值平均误差低于1.8%,最大误差低于3%。通过实验验证了FFRLS-EKF-SOC精确性,解决了误差累积问题。 In order to accurately estimate state of charge(SOC) of the electric car lithium-ion battery, the paper used a variety of equivalent circuit model and built space state equation, through real-time online with forgetting factor recursive least squares identification battery model parameters, dynamic real-time update battery model state equation, the experimental condition to make use of the Matlab simulation, based on the battery circuit model of joint FFRLS-EKF algorithm, and joined the battery state of health(SOH),The average error of the obtained SOC estimate is less than 1.8% and the maximum error is less than 3%.Finally, the accuracy of FFRLS-EKF-SOC is verified, and the error accumulation problem is solved.
作者 刘民 李少林 张景明 LIU Min;LI Shaolin;ZHANG Jingming(School of Mechatronic Engineering,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《桂林电子科技大学学报》 2019年第2期130-134,共5页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61320106008) 广西图像图形智能处理重点实验室基金(GIIP201705) 桂林电子科技大学研究生教育创新计划(2017YJCX92,2018YJCX56)
关键词 荷电状态 锂离子电池 联合算法 模型参数 等效电路 健康状态因子 state of charge(SOC) lithium-ion battery combined algorithm equivalent circuit model parameters state of health factor
  • 相关文献

参考文献10

二级参考文献101

共引文献216

同被引文献35

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部