期刊文献+

基于卡尔曼滤波修正算法的电池SOC估算 被引量:38

Estimation of battery SOC based on Kalman filter correction algorithm
下载PDF
导出
摘要 电池荷电状态(SOC)的估算是电池管理系统的核心内容,SOC估算准确与否,将直接影响到电池管理系统的决策和控制。在结合开路电压法、安时法的基础上,充分利用扩展卡尔曼滤波法的修正功能,综合考虑电池充放电倍率、温度和充放电循环次数等因素对SOC估算的影响,提出了卡尔曼滤波修正算法,并将其应用在插电式混合动力汽车电池管理系统中。研究结果表明,卡尔曼滤波修正算法有效地解决了传统安时法无法估计SOC初值和误差累积,以及开路电压法需要电池静置无法做到在线估算SOC等问题,获得了更高的估算精度,为电池管理系统提供一种实用的SOC估算方案。 The estimation of state-of-charge was the key part of battery management system (BMS). The control of BMS was influenced by the accurate estimation. Based on the combination of the open-circuit-voltage method and Ah counting method, the correction factor of the extended Kalman filter was used. Charging and discharging rate and battery temperature and battery aging problem were considered. Then the Kalman filter correction algorithm was proposed. Algorithm was applied in the BMS of plug-in hybrid electric vehicle. The result indicates that the Kalman filter correction algorithm can make a further correction of the SOC which is estimated by open-circuit-voltage method and Ah counting method, then the accuracy of SOC estimation in order to provide a practical solution for the battery management system is improved.
出处 《电源技术》 CAS CSCD 北大核心 2014年第2期298-302,共5页 Chinese Journal of Power Sources
基金 教育部博士点基金(20100072110038) 国家自然科学基金项目(70871091 61075064 61034004 61005090) 教育部新世纪人才计划项目(NECT-10-0633)
关键词 SOC 卡尔曼滤波修正算法 扩展卡尔曼滤波算法 电池管理系统 SOC Kalman filter correction algorithm extended Kalman filter BMS
  • 相关文献

参考文献7

  • 1GOULD C R,BINGHAM C M,STONE D A. New battery model and state-of-health determination through subspace parameter estimation and state-observer technique[J].{H}IEEE Transactions on Vehicular Technology,2009,(8):3905-3916. 被引量:1
  • 2麻友良,陈全世,齐占宁.电动汽车用电池SOC定义与检测方法[J].清华大学学报(自然科学版),2001,41(11):95-97. 被引量:140
  • 3CHENG K W E,DIVAKAR B P,WU H J. Battery-Management System (BMS) and SOC development for electrical vehicles[J].IEEE Trans Veh Teclmol,2011,(1):76-88. 被引量:1
  • 4李哲,韩雪冰,卢兰光,欧阳明高.动力型磷酸铁锂电池的温度特性[J].机械工程学报,2011,47(18):115-120. 被引量:146
  • 5SZUMANOWSKI A,CHANG Y. Battery management system based on battery nonlinear dynamics modeling[J].{H}IEEE Transactions on Vehicular Technology,2008,(3):1425-1432. 被引量:1
  • 6GREGORY L P. LiPB dynamic cell models for Kalman-filter SOC estimation[A].Busan:EVS,2002.193. 被引量:1
  • 7WELCH G,BISHOP G. An introduction to the Kalman filter[A].2001. 被引量:1

二级参考文献13

共引文献284

同被引文献307

引证文献38

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部