摘要
针对模拟电路健康管理的特点,提出了一种基于PSO优化多核RVM的模拟电路故障预测方法。利用参数分析得到电路的输出频域响应作为特征,计算其与电路无故障标准响应的欧氏距离来表征电路元件健康值,将多个核函数线性组合,并用PSO优化多核RVM参数后的模型实现对各个时间点元件的健康值变化轨迹进行预测。仿真结果表明,该方法在小样本情况下,预测效果优于单一核函数的RVM模型,适用于健康管理中实时预测,具有较好的实用性。
Aimed at the characteristics of prognostic and health management in analog circuits, a new method for analog circuit fault prediction based on particle swarm optimized multi-kernel RVM is proposed in this paper. Firstly, fault features are extracted by parameter analysis of the circuit, then the health value of circuit components is represented through calculating the Euclidean distance. Finally, combining different kernel function linearly, the trend of health value trajectory with respect to time points can be predicted by particle swarm optimization, the proposed approach is appropriate for real time prediction in prognostic and health management and is better than the single kernel RVM model in the case of small sample. Simulation results validate the good practicability and effectiveness of the proposed method.
作者
颜学龙
陈卓
YAN Xuelong;CHEN Zhuo(The CAT Lab of Guilin University of Electronic Technology,Guilin,Guangxi 541004,China)
出处
《计算机工程与应用》
CSCD
北大核心
2019年第12期140-144,共5页
Computer Engineering and Applications
基金
广西自动检测技术与仪器重点实验室基金(No.YQ17101)
关键词
相关向量机
核函数
欧氏距离
模拟电路
粒子群寻优
Relevance Vector Machine(RVM)
kernel function
Euclidean distance
analog circuits
Particle Swarm Optimization( PSO)