期刊文献+

基于灰色相关向量机的故障预测模型 被引量:33

Fault prognostic model based on grey relevance vector machine
下载PDF
导出
摘要 针对样本数据量较小条件下的故障预测问题,提出了一种灰色相关向量机(relevance vector ma-chine,RVM)故障预测模型。在模型的训练阶段,根据特征数据序列建立其离散灰色模型(discrete grey model,DGM),以DGM的预测值作为输入、原始数据序列作为输出,训练得到RVM回归预测模型;在模型的预测阶段,由建立的DGM和RVM回归预测模型组合得到灰色RVM故障预测模型,并通过引入新陈代谢过程,不断更新数据中的信息。实验结果表明,模型的预测性能优于传统的灰色预测模型。 To solve the fault prognostic problem caused by small samples, a model hased on grey relevance vector machine (RVM) is presented. At the training stage, the discrete grey model (DGM) is established according to the characteristic data sequence, and the model based on RVM regression is trained by using the forecasting values of DGM as input and using the original data sequence as output; At the forecasting stage, a grey RVM model is established by combining DGM and model based on RVM regression, and the information contained in the data are updated through metabolism. The experiment results show that the model has a better performance than conventional grey models.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第2期424-428,共5页 Systems Engineering and Electronics
关键词 故障预测 灰色模型 相关向量机 新陈代谢 fault prognostic grey model relevance vector machine (RVM) metabolism
  • 相关文献

参考文献16

  • 1Goh K M, Tjahjono B, Baines T, et al. A review of research in manufacturing prognostics[C]// Proc. of the IEEE Interna- tional Conference on Industrial In f ormatics ,2006:417 - 422. 被引量:1
  • 2Link C J. Neural networks for model-based prognostics [C]// Proc. of the IEEE Aerospace Conference, 1999 : 21 - 28. 被引量:1
  • 3Zhang S, Ganesan R. Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery [J]. Journal of Engineering for Gas Turbines and Power,1997,119 (2) :378 - 384. 被引量:1
  • 4Wang P, Vachtsevanos G. Fault prognostics using dynamic wavelet neural networks[J]. Artificial Intelligence for Engineering Design Analysis and Manufacturing, 2001, 15(4) : 349 - 365. 被引量:1
  • 5Wang W Q, Golnaraghi M F, Ismail F. Prognosis of machine health condition using neuro-fuzzy systems[J]. Mechanical Sys- tems and Signal Processing ,2004,18(4) :813 - 831. 被引量:1
  • 6Deh W. Time series prediction for machining errors using support vector regression[C]// Proc. of the 1st International Conference on Intelligent Networks and Intelligent Systems, 2008 : 27 - 30. 被引量:1
  • 7杨树仁,沈洪远.基于相关向量机的机器学习算法研究与应用[J].计算技术与自动化,2010,29(1):43-47. 被引量:56
  • 8Tipping M E. Sparse Bayesian learning and the relevance vector machine [ J ]. Journal of Machine Learning Research, 2001, 1(3) :211 -244. 被引量:1
  • 9黄大荣,黄丽芬.灰色系统理论在故障预测中的应用现状及其发展趋势[J].火炮发射与控制学报,2009,30(3):88-92. 被引量:25
  • 10Tipping M E. The relevance vector machine[C]// Proc. of the Advances in Neural Information Processing Systems, 2000: 652 -658. 被引量:1

二级参考文献48

共引文献128

同被引文献386

引证文献33

二级引证文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部