摘要
尝试用非线性理论对短期交通流进行分析和预测.建立了基于混沌动力学理论的短期交通流预测模型和方法,给出短期交通流预测的框架,用主分量分析法(PCA)对三种采样间隔(1 min5、min和15 min)的短期交通流数据进行分析,在判定短期交通流表现出混沌特性的基础上,用基于相空间重构理论的加权一阶局域预测法进行短期交通流预测.理论研究成果在上海延安高架路5 min采样间隔的交通流线圈检测数据中得到了验证,预测数据与实测数据吻合较好.
This paper tries to analyze and forecast the short-term traffic flow based on the nonlinear theory. The traffic flow forecasting frame is presented first and Three kinds of traffic flow data which are collected in different time scales ( 1 min, 5 min and 15 min) are analyzed using PCA method. It shows that the traffic flow data exhibits chaotic properties. On this basis, the first-order weighing local approximation method based on phase space reconstruction is set up. At last, the paper applies the forecasting models to the real traffic flow time series in Shanghai viaduct of Yan'an road. The result of is forecasting satisfying .
出处
《西安建筑科技大学学报(自然科学版)》
CSCD
北大核心
2006年第2期184-188,共5页
Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
关键词
短期交通流预测
混沌
相空间重构
short-term traffic flow forecasting
chaos
phase space reconstruction