期刊文献+

基于在线学习社区的教学评价体系研究 被引量:1

Research on the Teaching Evaluation System Based on Online Learning Community
下载PDF
导出
摘要 针对互联网快速发展下在线学习社区存在的师生互动实时性差、没有有效的激励机制、评价体系不完善等问题,分析了在线学习社区各类问题产生的根源,提出了课程推荐优化、个性化资源库构建、在线问答系统构建等优化方案。 Aiming at the problems of poor real-time interaction between teachers and students in the online learning community under the rapid development of the Internet,lack of effective incentive mechanism and imperfect evaluation system,we ana- lyzes the root causes of various problems in the online learning community. We propose optimization schemes such as course recommendation optimization,personalized resource pool construction,and online question and answer system construction.
作者 刘丹 LIU Dan(School of Cyber Science and Engineering,Wuhan University,Wuhan Hubei 430079,China)
出处 《湖北开放职业学院学报》 2019年第8期158-159,168,共3页 Journal of Hubei Open Vocational College
关键词 学习社区 MOOC 教育大数据 learning community massive open online course educational big data
  • 相关文献

参考文献5

二级参考文献40

  • 1徐东坡.培养高校学生创新能力的策略[J].教书育人(高教论坛),2008,0(9):41-43. 被引量:6
  • 2李克东,赵建华.混合学习的原理与应用模式[J].电化教育研究,2004,25(7):1-6. 被引量:1186
  • 3杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 4何克抗.从Blending Learning看教育技术理论的新发展[J].国家教育行政学院学报,2005(9):37-48. 被引量:806
  • 5Deshpande M, Karypis G. Item-Based top-n recommendation algorithms. ACM Trans. on Information Systems, 2004,22(1): 143-177. [doi: 10.1145/963770.963776]. 被引量:1
  • 6Castagnos S, Boyer A. A client/server user-based collaborative filtering algorithm: Model and implementation. In: Brewka G, Coradeschi S, Perini A, eds. Proc. of the European Conf. on Artificial Intelligence. Riva del Garda: lOS Press, 2006. 617-621. 被引量:1
  • 7Wang J, De Vries AP, Reinders MJT. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Efthimiadis NE, Dumais ST, Hawking D, Jarvelin K, eds. Proc. of the Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM, 2006. 501-508. [doi: 10.1145/1148170.1148257]. 被引量:1
  • 8Chen WY, Chu JC, Luan J, Bai H, Wang Y, Chang EY. Collaborative filtering for orkut communities: Discovery of user latent behavior. In: Quemada J, Leon G, Maarek Y, Nejdl W, eds. Proc. of the Int'l Conf. on World Wide Web. New York: ACM, 2009. 681-690. idol: I0.1145/1526709.1526801]. 被引量:1
  • 9Konstas I, Stathopoulos V, Jose JM. On social networks and collaborative recommendation. In: Allan J, Aslam JA, Sanderson M, Zhai CX, Zobel J, eds. Proc. of the Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM, 2009. 195-202. [doi: 10.1145/1571941.1571977]. 被引量:1
  • 10Jiang M, Cui P, Liu R,Yang Q, Wang F, Zhu W, Yang SQ. Social contextual recommendation. In: Chen XW, Lebanon G, Wang HX, Zaki M J, eds. Proc. of the ACM Int'l Conf. on Information and Knowledge Management. New York: ACM, 2012.45-54. [doi: 10.1145/2396761.2396771 ]. 被引量:1

共引文献40

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部