摘要
采用一种带浸入边界法的新型五阶有限差分WENO(weighted essentially non-oscillatory)格式在笛卡尔网格上求解含有复杂物面的双曲型守恒律方程。这种结构网格上的新型WENO格式因对计算网格质量依赖性较高,故一般不能直接应用于上述问题的数值模拟。而浸入边界法是一种能较好处理复杂物面边界的方法。将两种方法结合起来,可在笛卡尔网格上数值解决跨音速复杂流动问题,并用四个经典算例验证新型五阶WENO方法的有效性。
It is applied a new fifth-order finite difference weighed essentially non-oscillatory (WENO) scheme with the immersed boundary methods for solving the hyperbolic conservation laws around the complex body surface on Cartesian grids. Such new WENO scheme cannot be directly applied to compute such problems due to its dependence of computational meshes. But several immersed boundary methods are very suitable for dealing with complex body surface in numerical simulations. So the two methods on combined to solve the complex transonic flow problems on Cartesian grids and the effectiveness of the new fifth-order WENO scheme is verified by four classical test cases.
作者
王丹
朱君
WANG Dan;ZHU Jun(College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《青岛大学学报(自然科学版)》
CAS
2019年第2期8-14,共7页
Journal of Qingdao University(Natural Science Edition)
基金
国家自然科学基金(批准号:11872210)资助