期刊文献+

五阶WENO有限差分法在线性双曲守恒律方程中的应用 被引量:2

Application of fifth-order WENO finite difference method in linear hyperbolic partial differential equation
下载PDF
导出
摘要 利用五阶WENO格式离散空间导数,三阶Runge-kutta法离散时间导数,探讨了五阶WENO有限差分法在线性双曲守恒律方程中的应用.经过经典数值算例的验证,结果表明五阶WENO有限差分法可实现线性双曲守恒律方程高精度、高分辨率和本质无振荡的求解,也可实现流体力学中运动界面高精度、高分辨率的追踪. Coupling with third-order Runge-Kutta, the fifth-order WENO (WENO5) scheme was used to discuss numerical calculation of the linear hyperbolic conservation equation. Third-order Runge-Kutta method was applied to discrete its time derivative, and WENO5 finite difference method was applied to discrete its spatial derivative. The accuracy and reliability of the method was verified with the classical numerical examples. From the results of numerical examples, it indicates that this method has high oscillatory, thus can achieve high resolution and high accuracy resolution, high precision, and is essentially non- interface tracking in the fluid mechanics.
出处 《广西科技大学学报》 CAS 2015年第1期90-95,共6页 Journal of Guangxi University of Science and Technology
基金 国家自然科学基金项目(51209042 11272057)资助
关键词 WENO 数值计算 双曲守恒律方程 界面追踪 WENO finite difference method numerical calculation hyperbolic partial differential equation interface tracking
  • 相关文献

参考文献5

二级参考文献29

  • 1魏文礼,郭永涛,王纪森.一维溃坝洪水波的高精度数值模拟[J].计算力学学报,2007,24(3):362-364. 被引量:13
  • 2Yao A., Sheng W. Interaction of elementary waves on a boundary for a hyperbolic system of conservation Laws[J]. Mathematical Methods in the Applied Sciences, 2007. 被引量:1
  • 3Tan D., Zhang T. Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws (Ⅰ): four J's cases, (Ⅱ):initial data consists of some rarefaction[J]. J. Diff. Eq., 1994, 111: 203-283. 被引量:1
  • 4Smoller J. Shock Waves and Reaction-Diffusion Equations[M]. Spring-Verlag, NewYork, 1994. 被引量:1
  • 5Tan D., Zhang T. and Zheng Y. Delta-Shock Waves as Limits of Vanishing Viscosity for Hyperbolic Systems of Conservation Laws[J]. J. Diff. Eq., 1994, 112. 被引量:1
  • 6Yang S., Zhang T. The MmB difference solutions of 2-D Riemann problems for a 2 × 2 hyperbolic system of conservation laws[J]. IMPACT of Comp. Science Engin., 1991, 3:146-180. 被引量:1
  • 7Chang T., Xiao L. The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics of 41[M]. Longman Scientific and Technical, 1989. 被引量:1
  • 8Reed W.H., Hill T.R., Triangular mesh methods for the neutron transport equation JR], Los Alamos Scienfic Laboratory Report LA-UR-, 1973: 73-479. 被引量:1
  • 9Liu X.D., Osher S., Chan T. Weighted essentially nonoscillatory schemes[J]. Journal of Computational Physics, 1994, 115:200-212. 被引量:1
  • 10阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2007. 被引量:5

共引文献19

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部