期刊文献+

用WENO方法求解双曲型守恒律方程组的初(边)值问题 被引量:1

Weighted Essentially Non-oscillatory(WENO) Method for A Hyperbolic System for Conservation Laws
下载PDF
导出
摘要 本文用WENO算法解决双曲型守恒律方程组初(边值)问题.给出一种满足熵条件、S_δ熵条件和边界熵条件的WENO算法.通过这个算法就能得到守恒律方程组的数值解,数值解和理论解是非常吻合的. This paper is concerned with the WENO schemes for both initial and initial-boundary value problem of a hyperbolic system for conservation laws. We give a kind of WENO schemes, which satisfy the entropy condition, Sδ-entropy condition and the boundary entropy condition. By using them, numerical simulations for the entropy solutions of the hyperbolic system for conservation laws are delivered. And our numerical simulations are the same as theoretic solutions.
机构地区 上海大学数学系
出处 《应用数学与计算数学学报》 2008年第2期85-92,共8页 Communication on Applied Mathematics and Computation
关键词 守恒律方程组 WENO算法 边界熵条件 Sδ熵条件 hyperbolic system for conservation laws, WENO schemes, the boundary entropy condition
  • 相关文献

参考文献8

  • 1Yao A., Sheng W. Interaction of elementary waves on a boundary for a hyperbolic system of conservation Laws[J]. Mathematical Methods in the Applied Sciences, 2007. 被引量:1
  • 2Tan D., Zhang T. Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws (Ⅰ): four J's cases, (Ⅱ):initial data consists of some rarefaction[J]. J. Diff. Eq., 1994, 111: 203-283. 被引量:1
  • 3Smoller J. Shock Waves and Reaction-Diffusion Equations[M]. Spring-Verlag, NewYork, 1994. 被引量:1
  • 4Tan D., Zhang T. and Zheng Y. Delta-Shock Waves as Limits of Vanishing Viscosity for Hyperbolic Systems of Conservation Laws[J]. J. Diff. Eq., 1994, 112. 被引量:1
  • 5Yang S., Zhang T. The MmB difference solutions of 2-D Riemann problems for a 2 × 2 hyperbolic system of conservation laws[J]. IMPACT of Comp. Science Engin., 1991, 3:146-180. 被引量:1
  • 6Chang T., Xiao L. The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics of 41[M]. Longman Scientific and Technical, 1989. 被引量:1
  • 7Reed W.H., Hill T.R., Triangular mesh methods for the neutron transport equation JR], Los Alamos Scienfic Laboratory Report LA-UR-, 1973: 73-479. 被引量:1
  • 8Liu X.D., Osher S., Chan T. Weighted essentially nonoscillatory schemes[J]. Journal of Computational Physics, 1994, 115:200-212. 被引量:1

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部