期刊文献+

一类具超临界源非线性双曲方程解的爆破时间下界估计 被引量:5

Lower Bound Estimate of Blow-Up Time for Solutions to Nonlinear Hyperbolic Equations with Supercritical Sources
下载PDF
导出
摘要 通过构造具小耗散项的新控制泛函,利用能量估计不等式和反向H?lder不等式,对一类具超临界源项的非线性双曲方程解的L^p范数建立一阶非线性微分不等式,并通过讨论微分不等式的性质获得解爆破时间的精确下界估计. By constructing a new control function with small dissipative term, using energy estimate inequalities and inverse Holder inequality, the first order nonlinear differential inequality was established a bout the L^p norm of the solutions of a class of nonlinear hyperbolic equations with supercritical source terms, and the accurate lower bound estimate of blow-up time for the solutions was obtained by discussing the properties of differential inequalities.
作者 王雪 郭悦 祖阁 WANG Xue;GUO Yue;ZU Ge(College of Mathematics,Jilin University,Changchun 130012,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2019年第3期567-570,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:J13100220)
关键词 双曲型方程 能量估计 下界估计 爆破时间 hyperbolic equation energy estimate lower bound estimate blow-up time
  • 相关文献

参考文献3

二级参考文献20

  • 1Levine H A. Instability and nonexistence of global solutions of nonlinear wave equations of the form Pu, =- Au + F(u) [J]. Trans. Amer. Nath. Soc., 1974,192 : 1-12. 被引量:1
  • 2Georgiev V,Todorova G. Existence of a solution of the wave equation with nonlinear damping and source terms[J]. J. Diff. Eq. , 1994,109 :295 - 308. 被引量:1
  • 3Todorova G. Cauehy problems for a nonlinear wave equations with nonlinear damping term[J]. Nonlinear Anal. , 2000,41 : 891-905. 被引量:1
  • 4Ikehata R. Some remarks on the wave equations with nonlinear damping and source terms[J]. Nonlinear Anal. , 1996,27 : 1165-1175. 被引量:1
  • 5Gazzola F, Squassina M. Global solutions and finite time blow up for damped semilinear wave equations [J]. Ann. I. H. Poincare-AN,2006,23 : 185-207. 被引量:1
  • 6Todorova G. Cauchy problem for a nonlinear wave equation with nonlinear damping and soure terms[J]. C. R. Acad. Sci. Paris Ser. ,1998,326:191-196. 被引量:1
  • 7Zhang J. Stability of standing waves for nonlinear Schrodinger equations with unbounded potentials[J]. Z. Angew. Math. Phys. ,2000,51:498-503. 被引量:1
  • 8Pucci P,Serrin J. Global nonexistence for abstract evolution equations with positive initial energy[J]. J. Differential Equations 1998,150 : 203-214. 被引量:1
  • 9Gerbi S, Said-Houari B. Asymptotic Stability and Blow up for a Semilinear Damped Wave Equation with DynamicsBoundary Conditions [J]. Nonlinear Anal, 20X1, 74(18) : 7137-7150. 被引量:1
  • 10LI Ke,YANG Zhijian. Exponential Attractors for the Strongly Damped Wave Equation [J]. Appl Math Comput,2013,220: 155-165. 被引量:1

共引文献7

同被引文献11

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部