摘要
通过构造具小耗散项的新控制泛函,利用能量估计不等式和反向H?lder不等式,对一类具超临界源项的非线性双曲方程解的L^p范数建立一阶非线性微分不等式,并通过讨论微分不等式的性质获得解爆破时间的精确下界估计.
By constructing a new control function with small dissipative term, using energy estimate inequalities and inverse Holder inequality, the first order nonlinear differential inequality was established a bout the L^p norm of the solutions of a class of nonlinear hyperbolic equations with supercritical source terms, and the accurate lower bound estimate of blow-up time for the solutions was obtained by discussing the properties of differential inequalities.
作者
王雪
郭悦
祖阁
WANG Xue;GUO Yue;ZU Ge(College of Mathematics,Jilin University,Changchun 130012,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2019年第3期567-570,共4页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:J13100220)
关键词
双曲型方程
能量估计
下界估计
爆破时间
hyperbolic equation
energy estimate
lower bound estimate
blow-up time