摘要
该文考虑了三维空间中具有非局部源的p-Laplace方程分别在Dirichlet边界条件和Robin边界条件下解的爆破性质,通过构造辅助函数并利用微分不等式的技巧,得到了两种边界条件下方程解的爆破时间下界估计.另外,给出了方程解在L^2-范数下不会发生爆破的充分条件·
In this paper, we consider an initial boundary value problem for a p-Laplacian equation under Dirichlet boundary condition or Robin boundary condition in three dimensional space. We use a differential inequality technique to determine a lower bound of blow-up time for the blow-up solution. In addition, we also give a sufficient condition which implies that blow-up does not occur.
作者
孙宝燕
Sun Baoyan(Department of Mathematics,Nanjing University,Nanjing 210093)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2018年第5期911-923,共13页
Acta Mathematica Scientia
基金
南京大学研究生科研创新基金(2016CL01)~~