期刊文献+

基于Hessian矩阵和Gabor滤波的手指静脉特征提取 被引量:2

Finger Vein Feature Extraction Based on Hessian Matrix and Gabor Filtering
下载PDF
导出
摘要 提出基于Hessian矩阵特征值比率的增强算法和改进的Gabor滤波特征提取算法相结合的手指静脉特征提取方法。将不同尺度下的Hessian矩阵的特征值应用于静脉增强函数中进行图像增强,然后再通过Gabor滤波进行特征提取,并在Poly U手指静脉数据库对所提算法进行实验验证。结果表明,该算法用于身份识别时的误识率为0. 375%,拒识率为1. 73%,等误率为0. 021%,比目前其他的手指静脉提取算法的识别性能有所提高。 This paper proposed a finger- vein feature extraction method combining an enhancement algorithm based on the ratio of Hessian matrix eigenvalues (ROE)and a feature extraction algorithm based on the improved Gabor filtering. The Hessian matrix eigenvalues at different scales were applied to the vein enhancement function to perform image enhancement and then the feature extraction was conducted through Gabor filters, and the algorithm was validated in the finger vein database of the PolyU. The experimental results show that the algorithm for identification has a false acceptance rate of 0.375%, false rejection rate of 1.73% and the equivalent error rate is 0.021%, which improves the recognition performance of other finger vein extraction algorithms.
作者 杨如民 许琳英 余成波 YANG Rumin;XU Linying;YU Chengbo(College of Electrical and Electronic Engineering, Chongqing University of Techology, Chongqing 400054, China)
出处 《兵器装备工程学报》 CAS 北大核心 2019年第3期103-107,111,共6页 Journal of Ordnance Equipment Engineering
基金 国家自然科学基金项目(61402063)
关键词 图像增强 特征提取 特征值比率 GABOR滤波 HESSIAN矩阵 image enhancement feature extraction ratio ofeigenvalues Gabor filters Hessian matrix
  • 相关文献

参考文献2

二级参考文献23

  • 1Kirbas C, Quek F. A review of vessel extraction techniques and algorithms [J]. ACM Computing Surveys (CSUR) (S0360-0300), 2004, 36(2): 81-121. 被引量:1
  • 2Lesage D, Angelini E D, Bloch 1, et al. A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes [J]. Medical image analysis (S1361-8415) 2009, 13(6): 819-845. 被引量:1
  • 3Koller T M, Gerig (3, Szekely G, et aL Multiscale detection of curvilinear structures in 2-D and 3-D image data [C]// Proceedings, Fifth International Conference on Computer Vision, 1995. USA: IEEE, 1995: 864-869. 被引量:1
  • 4Krissian K, Malandain G, Ayache N, et al. Model-based detection of tubular structures in 3D images [J]. Computer vision and image understanding (S1077-3142), 2000, 80(2): 130-171. 被引量:1
  • 5Frangi A F, Niessen W J, Vincken K L, et al. Multiscale vessel enhancement filtering [M]// Medical Image Computing and Computer-Assisted Interventation--MlCCAl'98. Germany: Springer Berlin Heidelberg, 1998: 130-137. 被引量:1
  • 6Sato Y, Nakajima S, Shiraga N, et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images [J]. Medical image analysis (S1361-8415), 1998, 2(2): 143-168. 被引量:1
  • 7Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two-and three-dimensional CT scans [J]. Medical physics (S0094-2405), 2003, 30(1): 2040. 被引量:1
  • 8Marmiesing R, Viergever M A, Niessen W J. Vessel enhancing diffusion: A scale space representation of vessel structures [J]. Medical Image Analysis (S 1361-8415), 2006, 10(6): 815-825. 被引量:1
  • 9Vogiatzis C Hernandez C, Torr P H S, et al. Multiview stereo via volumetric graph-cuts and occlusion robust photo-consistency [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2007, 29(12): 2241-2246. 被引量:1
  • 10Xiao C, Staring M, Shamonin D, et al. A strain energy filter for 3D vessel enhancement with application to pulmonary CT images [J]. Medical image analysis (S1361-8415), 2011, 15(1): 112-124. 被引量:1

共引文献9

同被引文献28

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部