期刊文献+

基于Hessian矩阵与多视图卷积神经网络的纵隔淋巴结自动检测方法 被引量:1

Automatic detection method for mediastinal lymph nodes based on Hessian matrix and multi-view convolution neural network
下载PDF
导出
摘要 淋巴结检测和分析对于肿瘤的疗效评估、分期具有重要意义。本研究提出一种基于Hessian矩阵与多视图卷积网络纵隔淋巴结自动检测方法。该方法首先确定纵隔部位淋巴结可能存在的区域;然后,基于淋巴结形态特征,构造多尺度增强滤波器,提取候选淋巴结;最后结合CT图像的冠状面、横断面和矢状面信息,设计多视图卷积网络对候选淋巴结进行分类。对90组患者的纵隔部位进行测试,平均每个患者9个假阳性淋巴结的条件下,灵敏度为90.32%。该方法对不同大小的淋巴结具有较高的检出率。 Lymph node detection and analysis are important for the assessment of cancer efficacy and staging.We proposed an automatic lymph node detection method based on Hessian matrix and multi-view convolutional network for mediastinal lymph nodes.Firstly,lymph nodes in the mediastinal region were identified.Then a multi-scale enhancement filter was constructed to obtain the candidate lymph nodes based on the morphological characteristics of lymph nodes.Finally,a multi-view convolution network was designed to classify the candidate lymph nodes by combing the coronal,transverse and sagittal information of CT images.The mediastinum of 90 groups patients were tested,the sensitivity was 90.32%under the condition of 9 false positive lymph nodes per patient.This method has high detection rate for different size lymph nodes.
作者 曹帅 严加勇 崔崤峣 于振坤 CAO Shuai;YAN Jiayong;CUI Yaoyao;YU Zhenkun(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology, Shanghai 200093,China;School of Medical Instrument ,Shanghai University of Medicine & Health Science, Shanghai 201318;Affiliated Zhoupu Hospital, Shanghai University of Medicine &Health Science, Shanghai 201318;Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163,China;Tongren Hospital of Nanjing, Nanjing 211102,China)
出处 《生物医学工程研究》 2021年第2期131-137,共7页 Journal Of Biomedical Engineering Research
基金 上海市浦东新区科技发展基金民生科研专项医疗卫生项目(PKJ2017-Y41) 江苏省省级重点研发专项资金资助项目(BE2017601)。
关键词 纵隔淋巴结检测 感兴趣区域 HESSIAN矩阵 多尺度增强 卷积神经网络 CT图像 Mediastinal lymph node detection Region of interest Hessian matrix Multiscale enhancement Convolution neural network CT images
  • 相关文献

参考文献3

二级参考文献23

  • 1Kirbas C, Quek F. A review of vessel extraction techniques and algorithms [J]. ACM Computing Surveys (CSUR) (S0360-0300), 2004, 36(2): 81-121. 被引量:1
  • 2Lesage D, Angelini E D, Bloch 1, et al. A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes [J]. Medical image analysis (S1361-8415) 2009, 13(6): 819-845. 被引量:1
  • 3Koller T M, Gerig (3, Szekely G, et aL Multiscale detection of curvilinear structures in 2-D and 3-D image data [C]// Proceedings, Fifth International Conference on Computer Vision, 1995. USA: IEEE, 1995: 864-869. 被引量:1
  • 4Krissian K, Malandain G, Ayache N, et al. Model-based detection of tubular structures in 3D images [J]. Computer vision and image understanding (S1077-3142), 2000, 80(2): 130-171. 被引量:1
  • 5Frangi A F, Niessen W J, Vincken K L, et al. Multiscale vessel enhancement filtering [M]// Medical Image Computing and Computer-Assisted Interventation--MlCCAl'98. Germany: Springer Berlin Heidelberg, 1998: 130-137. 被引量:1
  • 6Sato Y, Nakajima S, Shiraga N, et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images [J]. Medical image analysis (S1361-8415), 1998, 2(2): 143-168. 被引量:1
  • 7Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two-and three-dimensional CT scans [J]. Medical physics (S0094-2405), 2003, 30(1): 2040. 被引量:1
  • 8Marmiesing R, Viergever M A, Niessen W J. Vessel enhancing diffusion: A scale space representation of vessel structures [J]. Medical Image Analysis (S 1361-8415), 2006, 10(6): 815-825. 被引量:1
  • 9Vogiatzis C Hernandez C, Torr P H S, et al. Multiview stereo via volumetric graph-cuts and occlusion robust photo-consistency [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2007, 29(12): 2241-2246. 被引量:1
  • 10Xiao C, Staring M, Shamonin D, et al. A strain energy filter for 3D vessel enhancement with application to pulmonary CT images [J]. Medical image analysis (S1361-8415), 2011, 15(1): 112-124. 被引量:1

共引文献6

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部