期刊文献+

基于改进的KPCA-PSO-WLSSVM在循环水腐蚀预测中的应用 被引量:1

下载PDF
导出
摘要 针对石化现场腐蚀速率参数存在测量成本高、测量周期长的问题,结合国内外腐蚀研究现状提出了一种基于改进的自适应加权最小二乘支持向量机回归建模方法。该方法首先对数据进行整合处理,借助核主成分分析(KPCA)算法对整合后的数据进行主成分提取,依据处理好的数据建立LS-SVM模型;其次采用改进的加权算法对LS-SVM进行权值处理;然后采用全局搜索能力较强的混沌粒子群-模拟退火优化算法(CPSO-SA)对LS-SVM模型正则化参数和核宽度参数进行优化,提高模型的泛化能力;最后建立优化后的KPCA-WLS-SVM模型。实验结果表明,应用该方法建立的循环水腐蚀预测模型的预测准确度远远高于其他预测模型的预测准确度。
作者 秦雯
机构地区 兰州工业学院
出处 《电气应用》 2019年第3期84-91,共8页 Electrotechnical Application
  • 相关文献

参考文献7

二级参考文献65

共引文献42

同被引文献9

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部