期刊文献+

基于混合遗传算法的铁路物流中心布局研究 被引量:3

A Study on the Layout of Railway Logistics Center based on the Hybrid Genetic Algorithm
下载PDF
导出
摘要 铁路物流中心的经济性和高效性取决于各个区域布局的科学合理性,兼顾经济和效率的原则,提出一种面向工程的铁路物流中心布局优化模型,以得到物流园区的最优布局方案。在优化模型中引入功能区转动变量,基于计算几何将功能区之间及功能区与不规则边界间的干涉情况作为罚函数纳入总优化目标函数中,从而增强优化模型的工程适用性,再采用混合遗传算法对模型进行全局最优解搜索。实例分析验证表明,该模型能很好地适应不规则边界,对物流中心的设计具有重要的指导作用。 The economical efficiency of railway logistics centers tend to depend on their scientific and rational layouts.To achieve high economy and efficiency,this paper proposes an engineering-oriented optimization model of railway logistics center layout,to which the rotational variables for different function areas are added.To enhance the engineering practicability of the model,I incorporate the interference between functional areas and that between functional areas and irregular land boundaries into the overall optimized objective function as a penalty function based on computational geometry while the global optimal solution of the model is acquired by applying the hybrid genetic algorithm.To conclude,the proposed model is expected to play an important instructive role in the layout design of railway logistics centers,which proves to be applicable for the cases with irregular land boundaries.
作者 刘姣姣 LIU Jiaojiao(Permanent Way,Station Yard and Terminal Design Department,China Railway Design Corporation,Tianjin 300142,China)
出处 《铁道货运》 2019年第1期18-22,共5页 Railway Freight Transport
基金 中国铁路总公司科技研究开发计划课题(2016X007-G)
关键词 铁路物流中心 布局优化 混合遗传算法 全局最优 不规则用地界 Railway Logistics Center Optimized Layout Hybrid Genetic Algorithm Global Optimum Irregular Land Boundary
  • 相关文献

参考文献7

二级参考文献14

  • 1Back T. Evolutionary algorithms in theory and practice[M]. New York: Oxford University Press, 1996 被引量:2
  • 2Leung Y W, Wang Yuping. An orthogonal genetic algorithm with quantization for global numerical optimization [J]. IEEE Trans On Evolutionary Computation, 2001, 5 (1):41 被引量:2
  • 3Angeline P J. Evolutionary optimization versus particle swarm optimization: philosophy and performance differences[C]//Porto V W. Proceedings of 7th International Conference on Evolutionary Programming Ⅶ. Berlin: Springer-Verlag, 1998: 601 被引量:2
  • 4Tsntsui S, Fujimoto Y, Ghosh A. Forking genetic algorithms: GAs with search space division schemes [J]. Evolutionary computation, 1997, 5(1): 61 被引量:2
  • 5Michelewicz Z. Genetic Algorithm + Data Structure = Evolutionary Programs [M]. Berlin: Springer-Verlag, 1996 被引量:2
  • 6中铁第一勘察设计院集团有限公司.西安铁路局物流规划研究报告[R].西安:中铁第一勘察设计院集团有限公司,2015. 被引量:1
  • 7Boysen N, Fliedner M, Jaehn F, et al. Survey on Container Processing in Railway Yards[J]. Transportation Science, 2013, 47(3): 312 -329. 被引量:1
  • 8Burak E, Emin G, Gokay A, et al. A Fuzzy TOPSIS Ap- proach for Logistics Center Location Selection[J]. Journal of Business Case Studies, 2011, 7(3): 49-55. 被引量:1
  • 9刘字哲.陆港铁路物流中心功能规划及布局研究[D].西安:长安大学,2013. 被引量:1
  • 10袁志明,迟骋.国外铁路物流中心发展经验借鉴[J].物流科技,2012,35(10):95-97. 被引量:14

共引文献23

同被引文献17

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部