期刊文献+

基于差分进化算法的图像分割参数选择方法研究

Study on the Method of Image Segmentation Parameter Selection Based on Differential Evolution Algorithm
下载PDF
导出
摘要 通过将差分进化算法引入差异度实验法图像分割参数的选择,根据参考图与差异度准则选择最佳的分割参数,可在一定程度上减少分割参数选择的盲目性。利用设计的软件原型系统对航空彩色图像的"最优"分割参数的选择进行实验分析,结果表明该方法可以获得较理想的分割参数及分割结果。同时,也可看出对于多尺度图像分割方法,较理想的分割结果对应的分割参数并不是唯一的。 In this paper,the differential evolution algorithm was used to select the image segmentation parameters according to the difference experiment method.Using this method,the aimless of segmentation parameters selection can be reduced to some extent.The optimal segmentation parameters of aerial color images are selected by using the software prototype system.The results show that this method can obtain ideal segmentation parameters and segmentation results.At the same time,it can be seen that for multi-scale image segmentation methods,the segmentation parameters corresponding to the ideal segmentation results are not unique.
作者 朱必熙 张艳红 ZHU Bixi;ZHANG Yanhong(Department of Humanities,Fujian Preschool Education College,Fuzhou,Fujian 350007)
出处 《武夷学院学报》 2018年第12期58-64,共7页 Journal of Wuyi University
基金 福建省教育厅科技项目(JAT160784)
关键词 差分进化 图像分割 参数优化 OBIA differential evolution image segmentation parameter optimization OBIA
  • 相关文献

参考文献6

  • 1朱俊杰,范湘涛,杜小平著..面向对象的高分辨率遥感图像分析[M].北京:科学出版社,2014:184.
  • 2黄万里..基于高分卫星数据多尺度图像分割方法的天山森林小班边界提取研究[D].福建师范大学,2015:
  • 3汪慎文,丁立新,张文生,郭肇禄,谢承旺.差分进化算法研究进展[J].武汉大学学报(理学版),2014,60(4):283-292. 被引量:83
  • 4赵艳丽..差分进化算法在图像处理中的应用研究[D].中国石油大学(华东),2010:
  • 5张春美,陈杰,辛斌.参数适应性分布式差分进化算法[J].控制与决策,2014,29(4):701-706. 被引量:21
  • 6蔡之华,龚文引著..差分演化算法及其应用[M].武汉:中国地质大学出版社,2010:203.

二级参考文献86

  • 1辛斌,陈杰,彭志红,窦丽华.基于互补变异算子的自适应差分进化算法[J].东南大学学报(自然科学版),2009,39(S1):10-15. 被引量:4
  • 2徐志高,关正西,张炜.模糊神经网络在导弹动力系统多故障诊断中的应用[J].弹箭与制导学报,2005,25(1):15-18. 被引量:3
  • 3Store R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359. 被引量:1
  • 4Zhang Chun-mei, Chen Jie, Xin Bin, et al. Differential evolution with adaptive population size combining lifetime and extinction mechanisms[C]. The 8th Asian Control Conf. Kaohsiung: IEEE, 2011: 1221-1226. 被引量:1
  • 5Xin Bin, Chen Jie, Zhang Jia, et al. Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: A review and taxonomy[J]. IEEE Trans on Systems Man and Cybernetics, Part C: Applications and Reviews, 2012, 42(5): 744-767. 被引量:1
  • 6Tasoulis D K, Pavlidis N G, Plagianakos V P, et al. Parallel differential evolution[C]. IEEE Congress on Evolutionary Computation. Portland: IEEE, 2004: 2023-2029. 被引量:1
  • 7Kozlov K N, Sanderson A C. New migration scheme for parallel differential evolution[C]. Int Conf on Bioinformatics of Genome Regulation and Structure. Novosibrirsk: Springer, 2006: 141-144. 被引量:1
  • 8Singh L, Kumar S. Parallel evolutionary asymmetric subsethood product fuzzy-neural inference system: an island model approach[C]. Int Conf on Computing: Theory and Applications. Kolkata: IEEE, 2007: 282-286. 被引量:1
  • 9Apolloni J, Leguizam6n G, Garcia-Nieto J, et al. Island based distributed differential evolution: An experimental study on hybrid testbeds[C]. IEEE Int Conf on Hybrid Intelligent Systems. Barcelona: IEEE, 2008: 696-701. 被引量:1
  • 10Falco I D, Maisto D, Scafuri U, et al. Distributed differential evolution for the registration of remotely sensed images[C]. IEEE Euromicro Int Conf on Parallel, Distributed and Networkbased Processing. Naples: IEEE, 2007: 358-362. 被引量:1

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部