摘要
主要研究局部对称黎曼空间中具有常平均曲率的完备超曲面的拼挤问题.运用关于超曲面的全脐张量的Okumura型不等式及Omori-Yau极值原理,得到了一个关于超曲面的第二基本形式模长平方的拼挤定理.
In this paper, the complete hypersurfaces with constant mean curvature in locally symmetricspace have been discussed. By Okumura-type inequality of total umbilicity tensor and Omori-Yau maximum principle, a pinching theorem for the squared length of the second fundamental form has been obtained.
作者
马蕾
刘建成
MA Lei;LIU Jian-cheng(School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2019年第2期5-9,共5页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11261051
11761061)
关键词
局部对称
常平均曲率
Okumura型不等式
全脐
locally symmetric
constant mean curvature
Okumura-type inequality
totally umbilical