期刊文献+

基于深度学习的交互似然目标跟踪算法 被引量:8

Interactive Likelihood Target Tracking Algorithm Based on Deep Learning
下载PDF
导出
摘要 针对传统的视频跟踪算法对视频跟踪的精度不足以及主成分分析(PCA)的非线性拟合能力较弱的问题,将卷积神经网络与交互似然(IL)算法相结合,在深度学习的基础上对粒子滤波算法进行了优化改进。将核主成分分析(KPCA)网络应用于视频跟踪来获取目标的深层次特征表达,并采用一种新的交互似然图像跟踪器,非迭代地计算,对不同区域进行跟踪取样来减少数据之间的关联需求。在图像集上将所提算法与多种改进算法进行评估对比,结果表明所提算法具有非常好的鲁棒性及精确性。 The traditional video target tracking methods usually prossess low accuracy.This paper proposed an improved scheme based on convolution neural network and the interactive likelihood algorithm,and optimized the particle filter algorithm on the basis of deep learning.To address the issue of deficient nonlinear fitting ability of the principal component analysis(PCA),a kernel principal component analysis(KPCA)tracking algorithm was provided to obtain the deeper characteristic expression of the target.Then,a novel interactive likelihood(ILH)method was performed for image-based trackers,which can non-iteratively compute the sampling of areas belonging to different targets and thus reducing the requirement for data associations.The performance of the presented algorithm was evaluated in comparison with several related algorithms on image datasets.The experimental results demonstrate the great robustness and accuracy of the proposed algorithm.
作者 张明月 王静 ZHANG Ming-yue;WANG Jing(School of Computer Science and Technology,Nanjing Tech University,Nanjing 211816,China)
出处 《计算机科学》 CSCD 北大核心 2019年第2期279-285,共7页 Computer Science
关键词 目标跟踪 深度学习 卷积神经网络 核主成分分析 交互似然 Target tracking Deep learning Convolutional neural network(CNN) Kernel principal component analysis(KPCA) Interactive likelihood(IL)
  • 相关文献

参考文献3

二级参考文献60

  • 1Li X, Hu W M, and Shen C H. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 5801-5848. 被引量:1
  • 2Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. 被引量:1
  • 3Clement F, Camille C, Laurent N, et al.. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1915-1929. 被引量:1
  • 4Alex K, Sutskever I, and Hinton G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, 2012: 748-764. 被引量:1
  • 5Zhou S S, Chen Q C, and Wang X L. Convolutional deep networks for visual data classification[J]. Neural Processing Letters, 2013, 38(11): 17-27. 被引量:1
  • 6Abdel-Hamid O, Mohamed A R, Jiang H, et al.. Convolutional neural networks for speech recognition[J]. ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533-1545. 被引量:1
  • 7Chen X Y, Xiang S M, and Li C L. Vehicle detection in satellite images by hybrid deep convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2014, 11(10): 1797-1801. 被引量:1
  • 8Evgeny A S, Denis M T, and Serge N A. Comparison of regularization methods for imagenet classification with deep convolutional neural networks[J]. AASRI Procedia, 2014, 6(8): 89-94. 被引量:1
  • 9Baldi P and Hornik K. Neural networks and principal component analysis: learning from examples without local minima[J]. Neural Networks, 1989, 2(1): 53-58. 被引量:1
  • 10Chan Tsung-han, Jia Kui, Gao Sheng-hua, et al.. PCANet: a simple deep learning baseline for image classification[OL]. http://arxiv.org/abs/1404.3606, 2014. 被引量:1

共引文献42

同被引文献85

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部