期刊文献+

基于狄利克雷过程高斯混合模型的变分推断 被引量:3

Variational inference for Gaussian mixture model based on Dirichlet process
下载PDF
导出
摘要 高斯混合模型(Gaussian Mixture Model,GMM)无法通过观测数据来自动选择适当数量的混合物分量,故无法准确描述数据。因此,将狄利克雷过程先验与GMM相结合,并运用变分贝叶斯推断方法来解决GMM模型的参数估计和模型选择问题,提出一种变分贝叶斯算法。首先,假设混合物分量个数是无限的,并根据观测数据自动确认;然后,给出变分推断的完整过程,并在此基础上提出变分贝叶斯推理算法,解决了参数估计和模型选择问题;最后,在合成数据集上进行仿真实验,实验结果表明,提出的算法收敛速度快,准确率达90%。 Gaussian Mixture Model(GMM)cannot automatically select the appropriate number of mixture components based on the observation data,which leads to the inability of GMM to accurately describe the data.In this paper,combining the Dirichlet process prior with GMM,the variational Bayesian inference method is used to solve the model parameter estimation and model selection problems.Firstly,we assume that the number of mixture components is infinite and can be automatically confirmed based on observation data.Secondly,the complete process of variational inference is given,and then,an efficient variational Bayesian inference algorithm is proposed,which can solve the problem of parameter estimation and model selection at the same time.In order to verify its validity,a lot of experiments are carried out on the synthetic data set.Experimental results show that the algorithm has a fast convergence speed and an accuracy rate of 90%.
作者 万志成 郑静 WAN Zhicheng;ZHENG Jing(School of Economics,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2021年第5期54-61,共8页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 高斯混合模型 变分贝叶斯 狄利克雷过程 模型选择 Gaussian mixture model variational Bayes Dirichlet process model selection
  • 相关文献

参考文献5

二级参考文献99

  • 1Li X, Bilmes J. A Bayesian divergence prior for classifier adaptation. J Mach Learn Res, 2007, 2:275-282. 被引量:1
  • 2Ferguson T. A Bayesian Anal of some nonparametric problems. Ann Stat, 1973, 1:209-230. 被引量:1
  • 3Sethuraman J. A constructive definition of Dirichlet priors. Stat Sinica, 1994, 4:639-650. 被引量:1
  • 4Ferguson T. Prior distributions on spaces of probability measures. The Ann Stat, 1974, 2:615-629. 被引量:1
  • 5Pitman J. Some developments of the Blackwell-MacQueen urn scheme. Statistics, Probability and Game Theory, 1996, 30:245-267. 被引量:1
  • 6Muliere P, Tardella L. Approximating distributions of random functionals of Ferguson-Dirichlet priors. Can J Sta, 1998, 26:283-297. 被引量:1
  • 7Liu J. Nonparametric hierarchical Bayes via sequential imputations. The Ann Stat, 1996, 24:911-930. 被引量:1
  • 8Ishwaran H, Zarepour M. Markov Chain Monte Carlo in approximate Dirichlet and Beta two-parameter process hierarchical models. Biometrika, 2000, 87:371-390. 被引量:1
  • 9Ishwaran H, James L. Some further developments for stick-breaking priors: Finite and infinite clustering and classification. Sankhya Set A, 2003, 65:577-592. 被引量:1
  • 10Ishwaran H, James L. Generalized weighted Chinese restaurant process for species sampling mixture models. Stat Sin, 2003, 13: 1211-1235. 被引量:1

共引文献17

同被引文献19

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部