期刊文献+

Green函数与非线性发展方程解的大时间状态

Green's function and large time behavior of solutions for nonlinear evolution systems
原文传递
导出
摘要 本文讨论用Green函数方法研究非线性发展方程初值问题解的大时间状态的逐点估计.在简要介绍Green函数的基本思想后,本文通过两个例子说明,对带耗散和双曲结构的非线性发展方程,其相应初值问题的解在双曲机制、抛物机制和非线性机制作用下,如何通过Green函数的方法厘清各种机制的作用,清晰看到其精细结构,并解释其他方法难以解释的一些令人诧异的现象. This paper studies pointwise estimates of solutions to initial value problems of large time behavior of nonlinear evolution equations in small perturbation cases by using the Green function method.Introducing the basic idea of Green function,this paper will exemplify under hyperbolic,parabolic and nonlinear mechanisms,how Green function helps the solutions to initial value problems of dissipative and hyperbolic structured nonlinear evolution equations sort out various mechanisms,find out fine structures,and figure out some amazing phenomena with which other methods could not deliver a clear explanation.
作者 王维克 Weike Wang
出处 《中国科学:数学》 CSCD 北大核心 2019年第2期249-266,共18页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11771284)资助项目
关键词 逐点估计 双曲机制 一般Huygens原理 阻尼机制 衰减率 pointwise estimate hyperbolic mechanism generalized Huygens’ principle damping mechanism decay rate
  • 相关文献

参考文献5

二级参考文献75

  • 1Degond P. Mathematical modelling of microelectronics semiconductor devices//Some Current Topics on Nonlinear Conservation Laws. AMS/IP Stud Adv Math, 15. Providence, RI: Amer Math Soc, 2000: 77-110. 被引量:1
  • 2Degond P, Jin S, Liu J. Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull Inst Math Acad Sin (N S), 2007, 2(4): 851-892. 被引量:1
  • 3Donatelli D. Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart Appl Math, 2003, 61:345-361. 被引量:1
  • 4Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008, 21(1): 135-148. 被引量:1
  • 5Duan R -J, Liu H, Ukai S, Yang T. Optimal L^p - L^q convergence rates for the compressible Navier-Stokes equations with potential force. J Differ Equ, 2007, 238(5): 737- 758. 被引量:1
  • 6Ducomet B, Feireisl E, Petzeltova H, Skraba I S. Global in time weak solution for compressible barotropic self-gravitating fluids. Discrete Continous Dynamical System, 2004, 11(1): 113-130. 被引量:1
  • 7Ducomet B, Zlotnik A. Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Appl Math Lett, 2005, 18(10): 1190-1198. 被引量:1
  • 8Hao C, Li H. Global Existence for compressible Navier-Stokes-Poisson equations in three and higher di- mensions. J Differ Equ, 2009, 246:4791 -4812. 被引量:1
  • 9Hoff D, Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44:603-676. 被引量:1
  • 10Ju Q, Li F, Li H -L. The quasineutral limit of Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differ Equ, 2009, 247:203- 224. 被引量:1

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部