期刊文献+

COMPRESSIBLE NON-ISENTROPIC BIPOLAR NAVIER-STOKES-POISSON SYSTEM IN R^3 被引量:1

COMPRESSIBLE NON-ISENTROPIC BIPOLAR NAVIER–STOKES–POISSON SYSTEM IN R^3
下载PDF
导出
摘要 The compressible non-isentropic bipolar Navier-Stokes-Poisson (BNSP) sys- tem is investigated in R3 in the present paper, and the optimal time decay rates of global strong solution are shown. For initial data being a perturbation of equilibrium state in Hl(R3) (R3) for 1 〉 4 and s E (0, 1], it is shown that the density and temperature for each charged particle (like electron or ion) decay at the same optimal rate (1 + t)-3/4, but the momentum for each particle decays at the optimal rate (1 + t)-1/4-3/2 which is slower than the rate (1 + t)-3/4-3/2 for the compressible Navier-Stokes (NS) equations [19] for same initial data. However, the total momentum tends to the constant state at the rate (1 +t)-3/4 as well, due to the interplay interaction of charge particles which counteracts the influence of electric field. The compressible non-isentropic bipolar Navier-Stokes-Poisson (BNSP) sys- tem is investigated in R3 in the present paper, and the optimal time decay rates of global strong solution are shown. For initial data being a perturbation of equilibrium state in Hl(R3) (R3) for 1 〉 4 and s E (0, 1], it is shown that the density and temperature for each charged particle (like electron or ion) decay at the same optimal rate (1 + t)-3/4, but the momentum for each particle decays at the optimal rate (1 + t)-1/4-3/2 which is slower than the rate (1 + t)-3/4-3/2 for the compressible Navier-Stokes (NS) equations [19] for same initial data. However, the total momentum tends to the constant state at the rate (1 +t)-3/4 as well, due to the interplay interaction of charge particles which counteracts the influence of electric field.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第6期2169-2194,共26页 数学物理学报(B辑英文版)
基金 supported by the NSFC (10871134) supported by the NSFC (10871134,10910401059) the funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR201006107) supported by the General Research Fund of Hong Kong,City Univ.103108
关键词 Non-isentropic bipolar Navier-Stokes Poisson system optimal time decay rate Non-isentropic bipolar Navier-Stokes Poisson system optimal time decay rate
  • 相关文献

参考文献2

二级参考文献18

  • 1Degond P. Mathematical modelling of microelectronics semiconductor devices//Some Current Topics on Nonlinear Conservation Laws. AMS/IP Stud Adv Math, 15. Providence, RI: Amer Math Soc, 2000: 77-110. 被引量:1
  • 2Degond P, Jin S, Liu J. Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull Inst Math Acad Sin (N S), 2007, 2(4): 851-892. 被引量:1
  • 3Donatelli D. Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart Appl Math, 2003, 61:345-361. 被引量:1
  • 4Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008, 21(1): 135-148. 被引量:1
  • 5Duan R -J, Liu H, Ukai S, Yang T. Optimal L^p - L^q convergence rates for the compressible Navier-Stokes equations with potential force. J Differ Equ, 2007, 238(5): 737- 758. 被引量:1
  • 6Ducomet B, Feireisl E, Petzeltova H, Skraba I S. Global in time weak solution for compressible barotropic self-gravitating fluids. Discrete Continous Dynamical System, 2004, 11(1): 113-130. 被引量:1
  • 7Ducomet B, Zlotnik A. Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Appl Math Lett, 2005, 18(10): 1190-1198. 被引量:1
  • 8Hao C, Li H. Global Existence for compressible Navier-Stokes-Poisson equations in three and higher di- mensions. J Differ Equ, 2009, 246:4791 -4812. 被引量:1
  • 9Hoff D, Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44:603-676. 被引量:1
  • 10Ju Q, Li F, Li H -L. The quasineutral limit of Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differ Equ, 2009, 247:203- 224. 被引量:1

共引文献14

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部