期刊文献+

液晶流体的半强解

Semi-Strong Solutions to Hydrodynamic Flow of Liquid Crystals
下载PDF
导出
摘要 该文将证明,即使初始密度在Ω中没有正下界,二维向列液晶流体存在半强解.该文主要的新颖点在于新估计||аtd||_(L4/3)(I,L^2(Ω))不依赖于p的下界,其中d及ρ分别表示流体的密度与分子方向. In this paper, we show the existence of semi-strong solutions to hydrodynamic flow of the two-dimensional nematic liquid crystals with small initial data, even though the initial density does not possess the positive lower bound in Ω. The main novelty of the paper lies in the fact that our new estimate of ||(a)td||L4/3(I,L2(Ω)) is independent of the lower-bound of p, where d and p represent the director of the molecules and the density of the fluid, respectively.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第2期367-377,共11页 Acta Mathematica Scientia
基金 中央高校科研基金(11QZR18) 华侨大学高层次人才科研基金(12BS232) 国家自然科学基金(11101044 11271051)资助
关键词 半强解 流体力学 液晶 Navier—Stokes方程组 Semi-strong solutions Hydrodynamic flow Liquid crystals Navier-Stokes equa-tions.
  • 相关文献

参考文献8

二级参考文献172

  • 1潘荣华.THE NONLINEAR STABILITY OF TRAVELLING WAVE SOLUTIONS FOR A REACTING FLOW MODEL WITH SOURCE TERM[J].Acta Mathematica Scientia,1999,19(1):26-36. 被引量:2
  • 2Temam R. Navier-Stokes Equations. Amsterdam: North-Holland, 1984. 被引量:1
  • 3Temam R, Wang X. On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity. Ann Scuola Norm Sup Pisa Cl Sci 4, 1997, 25(3/4): 807-828. 被引量:1
  • 4Temam R, Wang X. Boundary layers associated with incompressible Navier-Stokes equations: the non- characteristic boundary case. J Diff Eqns, 2002, 179:647-686. 被引量:1
  • 5von Wahl W. The Equations of Navier-Stokes and Abstract Parabolic Equations. Braunschweig/Wiesbaden: Vieweg & Sohn, 1985. 被引量:1
  • 6Wang X. A Kato type theorem on zero viscosity limit of Navier-Stokes flows. Indiana Univ Math J, 2001, 50(Special Issue): 223-241. 被引量:1
  • 7Xino Y, Xin Z -P. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60:1027-1055. 被引量:1
  • 8Yudovich V I. A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid through a given region. Math Sb, 1964, 4:562-588. 被引量:1
  • 9Achdou Y, Pironneau O, Valentin F. Effective boundary conditions for laminar flows over periodic rough boundaries. J Comput Phys, 1998, 147:187-218. 被引量:1
  • 10Adams R A, Fournier J F. Sobolev Spaces. Amsterdam: Elsevier/Academic Press, 2003. 被引量:1

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部