期刊文献+

超深卷积神经网络的图像超分辨率重建研究 被引量:9

Research on Image Super-Resolution Reconstruction of Super Deep Convolutional Neural Network
下载PDF
导出
摘要 针对VDCN网络结构在大尺度因子上超分辨率效果较差的缺点,提出一种高精度单图像超分辨率重建方法。将ReLU激活函数更换为PReLU激活函数,增加网络层数,使用25个带PReLU激活函数的卷积层进行训练和测试。实验结果表明,与VDCN方法相比,该方法耗费时间较少,且性能更稳定。 To solve the disadvantage of VDCN network structure in large scale factors,a new high-precision single image super-resolution method is proposed.The ReLU activation function is replaced with the PReLU activation function,and the number of network layers is increased.The model uses 25 convolution layers with PReLU activation functions to train and test.Experimental results show compared with the VDCN method,this method takes less time and has stable performance.
作者 连逸亚 吴小俊 LIAN Yiya;WU Xiaojun(College of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第1期217-220,共4页 Computer Engineering
基金 国家自然科学基金(61672265)
关键词 卷积神经网络 图像超分辨率 PReLU激活函数 深度学习 网络深度 Convolutional Neural Network(CNN) image Super-Resolution(SR) PReLU activation function deep learning network depth
  • 相关文献

参考文献1

二级参考文献43

  • 1Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306. 被引量:1
  • 2Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263. 被引量:1
  • 3Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592. 被引量:1
  • 4Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509. 被引量:1
  • 5Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425. 被引量:1
  • 6Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20. 被引量:1
  • 7Candes E J,Tao T.Decoding by linear programming.IEEE Transactions on Information Theory,2005,51(3):4203-4215. 被引量:1
  • 8Cand,et al.Sparsity and incoherence in compressive sampiing.Inverse Problems,2007,23(3):969-985. 被引量:1
  • 9Candes E,Tao T.The dantzig selector:Statistical estimation when P is much larger than n.Annals of Statistics,2007,35(6):2313-2351. 被引量:1
  • 10Chen S S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit.SIAM Journal on Scientific Computing,2001,43(1):129-159. 被引量:1

共引文献213

同被引文献25

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部