期刊文献+

基于自适应多字典学习的单幅图像超分辨率算法 被引量:25

Single Image Super Resolution Based on Adaptive Multi-Dictionary Learning
下载PDF
导出
摘要 自适应字典学习利用图像结构自相似性,将图像自身作为训练样本,通过字典学习使图像中的相似块在字典下具有稀疏表示形式.本文将全局字典学习中利用图像库获取附加信息的思想融入到自适应字典学习的过程中,提出了一种基于自适应多字典学习的单幅图像超分辨率算法,从低分辨率图像自身与图像库同时获取附加信息.该算法对低分辨率图像金字塔结构中的图像块进行聚类,在聚类结果的引导下将图像库中的图像块进行分类,利用各类中的样本分别构建针对各类的多个字典,从而确定表达重建图像块的最优字典.实验表明,与Sc SR、SISR、NLIBP、CSSS以及m SSIM等算法相比,本文算法具有更好的超分重建效果. Adaptive dictionary learning uses the lowresolution image itself as training samples to make the similar patches have sparse representation over the learned dictionary,so that extra information can be exploited from structural selfsimilarity by dictionary learning. In this paper,we propose a single image super resolution method based on adaptive multidictionary learning. To exploit extra information from both the lowresolution image itself,and the image database,the proposed method incorporates the idea of global dictionary learning that the image database can be used to obtain extra information into the process of adaptive dictionary learning. In the proposed method,all patches in the image pyramid of the lowresolution image are clustered into several groups,then each patch satisfying a certain condition in the database is classified into one of these groups with the supervision of the clustering results,and multi-dictionary learning is used to learn corresponding dictionaries for different groups. Experimental results demonstrate that our method achieves better result compared with ScSR,SISR,NLIBP,CSSS and m SSIMmethods.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第2期209-216,共8页 Acta Electronica Sinica
基金 国家科技支撑计划(No.2012BAH31B01) 国家自然科学基金(No.61171117) 北京市教育委员会科技计划重点项目(No.KZ201310028035)
关键词 超分辨率 稀疏表示 自适应字典学习 全局字典学习 super resolution sparse representation adaptive dictionary learning global dictionary learning
  • 相关文献

参考文献3

二级参考文献60

  • 1韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 2韩玉兵,吴乐南.基于自适应滤波的视频序列超分辨率重建[J].计算机学报,2006,29(4):642-647. 被引量:14
  • 3邵文泽,韦志辉.一种非线性数字滤波器的统一设计框架及其性能分析[J].计算机学报,2007,30(1):91-102. 被引量:10
  • 4S Farsiu,M Elad,P Milanfar.Multiframe demosaicing and super-resolution of color images[J].IEEE Transactions on Image processing,2006,15(1):141-159. 被引量:1
  • 5Shen Huanfeng,Zhang Liangpei,Huang Bo,et al.A MAP approach for joint motion estimation,segmentation,and super resolution[J].IEEE Transactions on Image Processing,2007,16(2):479-490. 被引量:1
  • 6R Y Tsai,T S Huang.Multi frame image restoration and registration[J].Advances in Computer Vision and Image Processing.1984,1(2):317-339. 被引量:1
  • 7R R Schultz,R L Stevenson.Extraction of high-resolution frames from video sequences[J].IEEE Transactions on Image Processing,1996,5(6):996-1011. 被引量:1
  • 8CA Segall,A K Katsaggelos,R Molina,et al.Bayesian resolution enhancement of compressed video[J].IEEE Transactions on Image Processing,2004,13(7):898-911. 被引量:1
  • 9A Zomet,A Rav-Acha,S peleg.Robust super-resolution[A].Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].Kauai,Hawaii,USA:IEEE,2001.645-650. 被引量:1
  • 10S Farsiu,M D Robinson,M Elad,ec al.Fast and robust multi frame super resolution[J].IEEE Transactions on Image Processing,2004,13(10),:1327-1344. 被引量:1

共引文献57

同被引文献157

引证文献25

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部