期刊文献+

压缩感知的多重测量向量模型与算法分析 被引量:13

Multiple Measurement Vectors for Compressed Sensing: Model and Algorithms Analysis
下载PDF
导出
摘要 压缩感知(Compressed Sensing:CS)技术是信号处理领域中数据获取和重构的新方法,其在理论上保证了只要源信号在时域或某种变换域中具有稀疏性,可以以远低于Shannon/Nyquist采样定理的采样率对信号进行采样而不至于引起信息丢失,同时,还可以以高概率重构源信号。CS现有算法大都从单重测量信号中恢复稀疏信号源,即为单重测量向量(SMV)模型。而在实际应用中,存在大量的多重测量向量情形,从多重测量向量中恢复未知的具有相同稀疏结构的联合稀疏信号源的模型称为CS的多重测量向量(MMV)模型。本文首先对CS-SMV和CS-MMV模型的基本数学原理进行了详细介绍,讨论了两种情况下稀疏源信号恢复的存在性与唯一性,然后在此基础上重点对近年来出现的各种联合稀疏信号的恢复算法进行了综述,分析了各种算法的性能,较全面的讨论了MMV模型的应用前景。最后对CS-MMV模型的发展趋势进行了总结和展望。 In the basic Compressed sensing(CS),the unknown sparse signal is recovered from a single measurement vector,this is referred to as a single measurement vector(SMV) model.But in many applications,we should recover the joint sparse source signals from a set of measurement vectors.This is called the multiple measurement vectors(MMV) problem of CS,which addresses the recovery of a set of sparse signal vectors that share common non-zero support.This paper begins with the basic mathematic model of SMV and MMV in detail,followed by the existences and uniqueness conditions of the solution to the SMV and MMV.Then,the algorithms treating MMV model are overviewed and analyzed in detail,which are divided into three classes: convex method,greedy method and Bayesian method.These algorithms mathematics frameworks and performances are especially analyzed.At last,the existing problems that need further research are pointed out and some current challenges and future trends are summed up and predicted.
出处 《信号处理》 CSCD 北大核心 2012年第6期785-792,共8页 Journal of Signal Processing
基金 国家自然科学基金(61001213) 国防基础预研基金(B1420110193)资助课题
关键词 压缩感知 稀疏表示 单重测量向量 多重测量向量 匹配追踪 贪婪算法 Compressed Sensing(CS) Sparse Representation Single Measurement Vector(SMV) Multiple Measurement Vectors(MMV) Matching Pursuit(MP) Greedy Algorithm
  • 相关文献

参考文献41

  • 1石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:713
  • 2金坚,谷源涛,梅顺良.压缩采样技术及其应用[J].电子与信息学报,2010,32(2):470-475. 被引量:78
  • 3李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205
  • 4Donoho D L. Compressed sensing. IEEE Trans. on Infor- mation Theory [ J ]. 2006,52 (4) : 1289-1306. 被引量:1
  • 5Candes E, Romberg J, Tao T. Robust uncertainty princi- ples: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans. on Information Theory ,2006,52 ( 2 ) :489-509. 被引量:1
  • 6Starek J L, Murtagh F, Fadili J M. Sparse Image and Sig- nal Processing : Wavelets, Curvelets, Morphological Diver- sity[ M]. New York: Cambridge University Press,2010. 被引量:1
  • 7Cotter S F, Rao B D, Engan K, Kreutz-Delgado K. Sparse solutions to linear inverse problems with multiple measure- ment vectors [ J ]. IEEE Trans. Signal Process. ,2005,53 (7) :2477-2488. 被引量:1
  • 8Duarte M F, Eldar Y C. Structured Compressed Sensing: From Theory to Applications [ J ]. IEEE Trans. Signal Process. , 2011,59 ( 9 ) :4053- 4085. 被引量:1
  • 9Eldar Y C, Rauhut H. Average case analysis of muhichan- nel sparse recovery using convex relaxation [ J ]. IEEE Trans. on Information Theory,2010,56( 1 ) :505-519. 被引量:1
  • 10Tang G, Nehorai A. Performance analysis for sparse sup- port recovery [ J ]. IEEE Trans. on Information Theory, 2010,56(3) :1383-1399. 被引量:1

二级参考文献252

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415. 被引量:1

共引文献1106

同被引文献206

  • 1赵树杰,赵建勋.信号检测与估计理论[M].北京:清华大学出版社,2009:272-275. 被引量:3
  • 2Donoho D L. Compressed sensing[J]. IEEE Transactions onInformation Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 3Candes E J. Compressive sampling[C]. Proceedings of theInternational Congress of Mathematicians, Madrid, 2006:1433-1452. 被引量:1
  • 4Baraniuk R and Steeghs P. Compressive radar iniaging[C].IEEE Radar Conference, Boston, MA, USA, 2007: 128-133. 被引量:1
  • 5Xing S, Dai D, Li Y, et al" Polarimetric 3D reconstruction ofmanmade objects[C]. IEEE International Geoscience andRemote Sensing Symposium, Munich, Germany, 2012:455-458. 被引量:1
  • 6Axelsson S R J. Analysis of random step frequency radar andcomparison with experiments[J]. IEEE Transactions onGeoscience and Remote Sensing, 2007, 45(4): 890-904. 被引量:1
  • 7Xu J, Pi Y, and Cao Z. Bayesian compressive sensing insynthetic aperture radar imaging[J]. IET Radar, Sonar hNavigation, 2012,6(1): 2—8. 被引量:1
  • 8Gurbuz A C, McClellan J H, and Scott W R. A compressivesensing data acquisition and imaging method for steppedfrequency GPRs[J]. IEEE Transactions on Signal Processing,2009,57(3): 2640-2650. 被引量:1
  • 9Chu He, Liu Long-zhu, Xu Lian-yu, et al" Learning basedcompressed sensing for SAR imaging super-resolution [J].IEEE Journal of Selected Topics in Applied EarthObservations and Remote Sensing, 2012, 5(4): 1271-1281. 被引量:1
  • 10Potter L C, Ertin E, Parker J T, et al. Sparsity andcompressed sensing in radar imaging [J]. Proceedings of theIEEE, 2010, 98(6): 1006-1020. 被引量:1

引证文献13

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部