期刊文献+

基于大数据的学业水平选考科目赋分方案 被引量:12

Big Data-Based Scaling Method for Selective Subject Proficiency Tests
下载PDF
导出
摘要 "选考自由"是我国高考改革史上的一项重大尝试,但目前的学业水平选考科目赋分方案导致了很多学生的等级分数被系统低估或高估,进而引发了物理等较难学科选考人数大幅度下降的后果,对基础教育和高校招生带来了比较大的负面影响。在考试行业常用的"标准设定"和"测验等值"方法使用条件不成熟的情况下,建议使用基于大数据代表性样本的等级赋分方案。本文所报告的是该方案的大数据模拟研究证据。 Providing the choice of selecting multiple subject tests instead of taking them all shows great progress in reforming the college entrance examination system in China. The current scaling method used for selective subject tests,however,has a strong negative impact on both compulsory education and college admission.This is because the rank scores of medium-competency students are systematically significantly underestimated when their competitors are extremely strong performers,which causes many students to give up subjects perceived as generally more difficult,such as physics,during high school. This scaling issue can be fixed by the methods of"standard setting"and"test equating"used in the testing industry. Unfortunately,this psychometric solution cannot be implemented in China due to concerns over test security and the fact that most tests in China have many openended items. Therefore,we propose a new scaling method that uses representative samples to determine rank scores for selective subject proficiency tests. The big data analysis results indicate that this new method can solve the essential problems in the current scaling method without big changes in the current college admission policy or much additional work,which saves cost in administration.
作者 杨志明 Yang Zhiming
出处 《教育测量与评价》 2019年第1期3-10,共8页 Educational Measurement and Evaluation
关键词 学业水平考试 赋分方法 大数据分析 subject proficiency tests scaling method big data analysis
  • 相关文献

参考文献7

二级参考文献31

  • 1American Educational Research Association, Ameri- can Psychological Association, National Council on Measurement in Edueation. Standards ibr the educational and psychological testing[M]. Washington, DC: Author, 2014. 被引量:1
  • 2Angoff, W. n. Scales, norms, and equivalent seores [M]. Educational Testing Services, Princeton, N J, 1984. 被引量:1
  • 3Petersen, N. Kolen, M., & Hoover, H; D.Scaling, Norm- ing, and Equating. In R., L. Linn ( Ed. ), Educational measurement ( 3rd ed. ) [M]. New York: Macmillan, 1995.221-262. 被引量:1
  • 4Wechsler, D. The Wechsler intelligence scale for ehil- drcn--fourth edition (WISC -IV ) [M]. San Antonio, TX: The Psychological Corporation, 2003. 被引量:1
  • 5Zaehary, R. A. & Gorsnch, R. I,. Continuous norming: implications for the WAIS-R [J]. JournahffClinieal Psychology, 1985,41 ( 1 ): 86-94. 被引量:1
  • 6Dorans, N.J. Recentering and Realigning the SAT Score Distributions: How and Why [J]. Journal of Educational Measure- ment, 2002,39( 1 ):59-84. 被引量:1
  • 7万玉凤,柴葳,董鲁皖龙.选才,如何不止于冷冰冰的分[N].中国教育报,2015-09-17. 被引量:1
  • 8温忠麟,罗冠中.高考方案:考试方式与计分方式[J].中国考试,2008(3):3-8. 被引量:14
  • 9温忠麟,罗冠中.高考分数的转换、校准和合成[J].中国考试,2010(11):9-16. 被引量:10
  • 10温忠麟,罗冠中.高考“3+X”分数转换和总分合成方法[J].考试研究,2006,2(3):41-52. 被引量:13

同被引文献45

引证文献12

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部