期刊文献+

基于深度卷积神经网络的车标识别研究 被引量:8

Research on Vehicle Identification Based on Deep Convolutional Neural Network
下载PDF
导出
摘要 车标识别技术作为智能交通系统中的一项关键技术,对完善未来道路交通系统有着重大的意义。运用深度卷积神经网络对车标的识别进行研究,根据车标的特征,在经典的LeNet-5网络基础上对其进行细化研究,给出基于改进后的LeNet-5网络车标识别模型。为了验证基于深度卷积神经网络车标识别方法的可行性和有效性,采用深度学习框架Caffe,对改进的方案进行仿真分析。实验结果表明,改进的车标识别模型在外界环境的作用下依然具有较高的识别率,在现行的环境下更加适用于智能交通的发展需要。 In this paper,the deep convolutional neural network is used to study the identification of the vehicle standard.According to the characteristics of the vehicle standard,the refined LeNet-5 network is used to refine it,and the improved LeNet-5 network vehicle identification model is given.In order to verify the feasibility and effectiveness of the deep convolutional neural network vehicle identification method,the deep learning framework caffe is used to simulate and improve the improved scheme.
出处 《工业控制计算机》 2018年第12期36-38,共3页 Industrial Control Computer
关键词 深度学习 卷积神经网络 车标识别 LeNet-5网络 deep learning convolutional neural network logo recognition LeNet-5 Network
  • 相关文献

参考文献5

二级参考文献43

  • 1罗彬,游志胜,曹刚.基于边缘直方图的快速汽车标志识别方法[J].计算机应用研究,2004,21(6):150-151. 被引量:25
  • 2Wang Yun-qiong,Liu Zhi-fang,Xiao Fei.A Fast Coarse-to-Fine Vehicle Logo Detection and Recognition Method[C]∥IEEE International Conference on Robotics and Biomimetics,2007(ROBIO 2007).IEEE,2007:691-696. 被引量:1
  • 3Yu Shu-yuan,et al.Vehicle logo recognition based on Bag-of-Words[C]∥2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).IEEE,2013:353-358. 被引量:1
  • 4Llorca D F,Arroyo R,Sotelo M A.Vehicle logo recognition in traffic images using HOG features and SVM [C]∥2013 16th International IEEE Conference on Intelligent Transportation Systems:Intelligent Transportation Systems for All Modes(ITSC 2013).2013:2229-2234. 被引量:1
  • 5Sam K-T,Tian Xiao-lin.Vehicle Logo Recognition Using Mo-dest AdaBoost and Radial Tchebichef Moments[M].IPCSIT.Singapore:IACSIT Press,2012. 被引量:1
  • 6Wang Sheng-ke,Liu Li-li,Xu Xiao-wei,et al.Vehicle Logo Re-cognition Based on Local Feature Descriptor[C]∥Information Technology Applications in Industry.2013:2388-2391. 被引量:1
  • 7Psyllos A P,Christos-Nikolaos E,Anagnostopoulos,et al.Vehicle Logo Recognition Using a SIFT-Based Enhanced Matching Scheme [J].IEEE Transactions on Intelligent T ransportation Systems,2010,11(2):322-328. 被引量:1
  • 8Hinton G.A Practical Guide to Training Restricted Boltzmann Machines[EB/OL].[2010-08-02].http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf. 被引量:1
  • 9Hinton G E,Osindero S,Teh Y.A Fast Learning Algorithm For Deep Belief Nets [J].Neural Computation,2006,18:1527-1554. 被引量:1
  • 10Zeiler M D,Fergus R.Visualizing and Understanding Convolutional Neural Networks[C]∥Computer Vision-ECCV 2014.2014:818-833. 被引量:1

共引文献49

同被引文献43

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部